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A. BASICS OF PROBABILITY

A.1 Events

Any repeatable process for which the result is uncertain
can be considered an experiment, such as counting
failures over time or measuring time to failure of a
specific item of interest. The result of one execution of
the experiment is referred to as an outcome. Due to
uncertainty associated with the process, repetitions or
trials of a defined experiment would not be expected to
produce the same outcomes. The set of all possible
outcomes of an experiment is defined as the sample
space. ( )

Sample spaces can contain discrete points (such as pass,
fail) or points in a continuum (such as measurement of
time to failure). An event E is a specified set of possi- Figure A. I Venn d
ble outcomes in a sample space S(denoted Ec S, where and three events.
c denotes subset).

.
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diagram, showing ten outcomes

Most events of interest in practical situations are
compound events, formed by some composition of two
or more events. Composition of events can occur
through the union, intersection, or complement of
events, or through some combination of these.

For two events, El and E2, in a sample space S. the
union of E, and E2 is defined to be the event containing
all sample points in El or E2 or both, and is denoted by
the symbol (El u E2). Thus, a union is simply the event
that either E, or E2 occurs or both E, and E2 occur.

For two events, E, and E2, in a sample space S, the
intersection of El and E2 is defined to be the event
containing all sample points that are in both E, and E2 ,
denoted by the symbol (El n E2). The intersection is
the event that both El and E2 occur.

Figure A. I shows a symbolic picture, called a Venn
diagram, of some outcomes and events. In this exam-
ple, the event E, contains three outcomes, event E2
contains five outcomes, the union contains seven
outcomes, and the intersection contains one outcome.

The complement of an event E is the collection of all
sample points in S and not in E. The complement of E
is denoted by the symbol E and is the outcomes in S
that are not in E occur. In Figure A. 1, the complement
of El is an event containing seven outcomes.

It is sometimes useful to speak of the empty or null set,
a set containing no outcomes. In Figure A. 1, the event
E3 is empty. It cannot occur.

Two events, E, and E2, are said to be mutually exclu-
sive if the event (E, n E2) contains no outcomes in the
sample space S. That is, the intersection of the two
events is the null set. Mutually exclusive events are
also referred to as disjoint events. Three or more
events are called mutually exclusive, or disjoint, if each
pair of events is mutually exclusive. In other words, no
two events can happen together.

A.2 Basic Probability Concepts

Each of the outcomes in a sample space has a probabil-
ity associated with it. Probabilities of outcomes are
seldom known; they are usually estimated from relative
frequencies with which the outcomes occur when the
experiment is repeated many times. Once determined,
the probabilities must satisfy two requirements:

I. The probability of each outcome must be a number
zOand 1.

2. The probabilities of all outcomes in a given sample
space must sum to 1.

Associated with any event E of a sample space S is the
probability of the event, Pr(E). Since an event repre-
sents a particular set of outcomes of an experiment, the
values of Pr(E) are built from the probabilities of the
outcomes in E.

Probabilities are associated with each outcome in the
samplespace through aprobability model. Probability
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models are often developed on the basis of information
derived from outcomes obtained from an experiment.
Probability models are also formulated in the context of
mathematical functions.

The values of Pr(E) estimated from the experimental
outcomes are often defined as being representative of
the long-run relativefrequency for event E. That is, the
relative frequency of an outcome will tend toward some
number between 0 and I (inclusive) as the number of
repetitions of the experiment increases. Thus, the
probability of the outcome is the number about which
the long-term relative frequency tends to stabilize.

This interpretation forms the basis of the relative
frequency definition of probability, also referred to as
the frequentist view of probability. In the frequentist
view, a mathematical theory of probability is developed
by deriving theorems based on the axioms of probabil-
ity given in the next subsection. The probability of an
event is considered to be a fixed quantity, either known
or unknown, that is a property of the physical object
involved and that can be estimated from data. A
theorem derived from the three axioms describes the
frequentist view:

If an experiment is repeated a large number of times, n,
the observed relative frequency of occurrence, nE/n, of
the event E (where nL, = the number of repetitions when
event E occurred) will tend to stabilize at a constant,
Pr(E), referred to as the probability of E.

Another interpretation of probability leads to the so-
called classical definition of probability, which can be
stated as follows:

If an experiment can result in n equally likely and
mutually exclusive outcomes and if n5 of these out-
comes contain attribute E, then the probability of E is
the ratio ne/n.

For example, if each of the outcomes in Figure A. I had
equal probability, 0.1, then Pr( E,) = 0.3, Pr(E2) = 0.5,
Pr(EnE2) = 0.1, Pr(E~uE2 ) = 0.7, and Pr(E3) = 0.

The classical definition is limited, because it assumes
equally likely outcomes. However, it helps motivate
the frequentist axioms mentioned above. These axioms
provide a mathematical framework for probability, an
overview of which is addressed in Section A.3. Some
texts, including parts of this handbook, use the terms
classical and frequentist interchangeably.

Another interpretation of probability is as a subjective
probability. Probabilities obtained from the opinions

of people are examples of subjective probabilities. In
this concept, probability can be thought of as a rational
measure of belief. Any past information about the
problem being considered can be used to help assign
the various probabilities. In particular, information
about the relative frequency of occurrence of an event
could influence the assignment of probabilities.

The notion of subjective probability is the basis for
Bayesian inference. In contrast to the relative fre-
quency definition of probability that is based on proper-
ties of events, subjective probability can be extended to
situations that cannot be repeated under identical
conditions. However, the assignment of subjective
probabilities can be done according to certain principles
so that the frequency definition requirements of proba-
bility are satisfied. All the mathematical axioms and
theorems developed for frequentist probability apply to
subjective probability, but their interpretation is differ-
ent.

Martz and Waller(1991) present subjective probability
as dealing not only with events but with propositions.
A proposition is considered to be a collection of events
that cannot be conceived as a series of repetitions, for
example, a nuclear power plant meltdown. The degree
of belief in proposition A, Pr(A), represents how
strongly A is believed to be true. Thus, subjective
probability refers to the degree of belief in a proposi-
tion. At the extremes, if A is believed to be true, Pr(A)
= I; if A is believed to be false, Pr(A) = 0. Points
between 0 and I represent intermediate beliefs between
false and true.

A.3 Basic Rules and Principles of
Probability

The relative frequency, classical, and subjective
probability definitions of probability satisfy the follow-
ing axiomatic requirements of probability:

If Pr(E) is defined for a type of subset of the sample
space S. and if

1. Pr(E) 2 0, for every event E,
2. Pr(E, u E 2u ... ) = Pr(E,) + Pr(E2) + - * *, where

the events El, E2,. . . , are such that no two have a
point in common, and

3. Pr(S) = 1,

then Pr(E) is called a probability function.

A probability function specifies how the probability is
distributed over various subsets E of a sample space S.
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From this definition, several rules of probability follow
that provide additional properties of a probability
function.

The probability of an impossible event (the empty or
null set) is zero, written as:

Pr(0) = 0,

where 0 is the null set. The probability of the comple-
ment of E is given by:

Pr(E) = I - Pr(E).

which is valid regardless of the independence of events
(NRC 1994, though printed with a misprint there). The
error in the rare-event approximation arises from the
remaining terms in the full expansion of the left-hand
side of the inequality. This approximation is frequently
used in accident sequence quantification.

Many experimental situations arise in which outcomes
are classified by two or more events occurring simulta-
neously. The simultaneous occurrence of two or more
events (the intersection of events) is called ajoint event,
and its probability is called a joint probability. Thus,
the joint probability of both events El and E2 occurring
simultaneously is denoted by Pr(E, n E2).

In general, the probability of the union of any two
events is given by:

Pr(E, u E2) = Pr(E) + Pr(E2 ) - Pr(E, n E2).

If E, and E2 are mutually exclusive, then Pr(E, n E2) =
PrNO) = 0, and

Pr(E, u E2) = Pr(E,) + Pr(E2 ),

which is a special case of the second axiom of probabil-
ity stated above and is sometimes referred to as the
addition rule for probabilities.

For three events,

Pr(E, u E2 u E3 ) = Pr(E1) + Pr(E2 ) + Pr(E3)
- Pr(E, n E2) - Pr(E, n E3)
- Pr(E2n E3) + Pr(E, n E2 n E3 ).

This rule is also referred to as the Indusion-exclusion
principle and can be generalized to n events. It is
widely used in PRA to calculate the probability of an
"or" gate (a union of events) in a fault tree (NRC 1994).

The inclusion-exclusion principle also provides useful
upper and lower bounds on the probability of the union
of n events that are not mutually exclusive. One such
upper bound, referred to as the rare event approxima-
tion, is:

Pr(E, u E2 u ... u E.) s Pr(E1 ) + Pr(E2) + ... + Pr(E,).

The rare event approximation should only be used when
the probabilities of the n events are all very small (NRC
1994). If the n events are mutually exclusive, the error
is zero. A bound on the error is

(a) max [Pr(E,)],

The probability associated with one event, irrespective
of the outcomes for the other events, can be obtained by
summing all the joint probabilities associated with all
the outcomes for the other events, and is referred to as
a marginal probability. A marginal probability is
therefore the unconditional probability of an event,
unconditioned on the occurrence of any other event.

Two events El and E2 are often related in such a way
that the probability of occurrence of one depends on
whether the other has or has not occurred. The condi-
tional probability of one event, given that the other has
occurred, is equal to the joint probability of the two
events divided by the marginal probability of the given
event. Thus, the conditional probability of event E2,
given event El has occurred, denoted Pr(E2I E,), is
defined as:

Pr(E21 E,) = Pr(E, n E2) / Pr(E1), (A.l)

for Pr(E,) >0. If Pr(E) = 0, Pr(E2 Et) is undefined.

Rearranging this equation yields:

Pr(E, n E2) = Pr(E1 ) Pr(E2 IE1)
(A.2)

= Pr(E 2) Pr(E IE2).

Calculation of joint probability requires the concept of
statistical independence. An event E2 is statistically
independent of E, if the probability of E2 does not
change whenever El occurs or does not occur. Thus, E2
is independent of El if

Pr(E21E,) = Pr(E2).

It follows from Equation A. 1 that E2 is independent of
El if their joint probability is equal to the product of the
unconditional, or marginal, probabilities of the events:

Pr(El n E2) = Pr(E1 ) Pr(E2).
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This is sometimes referred to as the multiplication rule
for probabilities. In this formulation, it is clear that E2
is independent of El if E, is independent of E2, and we
say simply that E, and E2 are statistically independent.
If Pr(E2) varies depending on whether or not event E,
has occurred, then events El and E2 are said to be
statistically dependent.

If El, E2, ... are mutually exclusive, and if thetnion of
El, 2, ... equals the entire sample space, then the events
El, E2, ... are said to form a partition of the sample
space. Exactly one of the events must occur, not more
than one but exactly one. In this case, the law of total
probability says

Pr(A) = FPr(A JE,) Pr(E1) .

A special case can be written when there are only two
sets. In this case, write El simply as E and F2 as E.

Then the law of total probability simplifies to

Pr(A) = Pr(A I E)Pr(E) + Pr(A I E )Pr(E )

for any event A. This formula is the basis for event
trees, which are frequently used to diagram the possibil-
ities in an accident sequence.

The concepts of mutually exclusive events and statisti-
cally independent events are often confused. If E, and
E2 are mutually exclusive events and Pr(E,) and Pr(E2)
are nonzero, Pr(El n E2) = Pr(0) = 0. From Equation
A.1 ,Pr(E2 E,)= O which does notequal Pr(E2). Thus,
the two events are not independent. Mutually exclusive
events cannot be independent and independent events
cannot be mutually exclusive.

Equation A.2 can be used to calculate the probability of
the intersection of a set of events (the probability that
all the events occur simultaneously). For two events E,
and E2, the probability of simultaneous occurrence of
the events is equal to the probability of E, times the
probability of E2 given that E, has already occurred. In
general, the probability of the simultaneous occurrence
of n events can be written as:

Pr(E, n E2 n ... n E) =

Pr(E,) Pr(E2 I E,) Pr(E3 IE2 n) E,) ... Pr(EE,, | , n ... n E,),

which is referred to as the chain rule. This rule can be
used to calculate the probability that a given accident
sequence occurs, with El denoting the initiating event

and the remaining events corresponding to the failure or
success of the systems that must function in order to
mitigate such an accident.

The probability of occurrence of at least one of a set of
statistically independent events yields a result that is
important to PRA and fault tree applications. If E,, E2,
..., E. are statistically independent events, the probabil-
ity that at least one of the n events occurs is:

Pr(E u E2 u... uE,,)= (A.3)

I - (I - (Pr(E1)J[l - (Pr(E2)] ... [I - (Pr(E.)],

which is equivalent (with expansion) to using the
inclusion-exclusion rule. For the simple case where
Pr(E,) = Pr(E2 ) = ... = Pr(E,) =p, the right-hand side of
this expression reduces to I - (I - p).

The general result in Equation A.3 has application in
PRA and fault tree analysis. For example, for a system
in which system failure occurs if any one of n independ-
ent events occurs, the probability of system failure is
given by Equation A.3. These events could be failures
of critical system components. In general, the events
represent the modes by which system failure (the top
event of the fault tree) can occur. These modes are
referred to as the minimal cut sets of the fault tree and,
if independent of each other (no minimal cut sets have
common component failures), Equation A.3 applies.
[See Vesely et al. (1981) for further discussion of fault
trees and minimal cut sets.]

If the n events are not independent, the right side of
Equation A.3 may be greater than or less than the left
side. However, for an important situation that fre-
quently arises in PRA, the right side of Equation A.3
forms an upper bound for the left side.

If the n events are cut sets that are positively associated
[see Esary and Proschan (1970, 1963)1, then the right
side is an upper bound for Pr(E, u E2 u ... u E) and is
known as the mrin cut upper bound (NRC 1994). This
name arises from common PRA applications where E,
is the Ob minimal cut set of a system or accident se-
quence of interest. In this case, the min cut upper
bound is superior to the rare event approximation and
can never exceed unity (as can happen with the rare
event approximation). If then events satisfyconditions
similar to those of the rare event approximation, the min
cut set upper bound is a useful approximation to the left
side of Equation A.3. Note that the min cut upper
bound is not applicable for mutually exclusive events.
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A.4 Random Variables and
Probability Distributions

A.4.1 Random Variables

A random variable is any rule that associates real
numbers with the outcomes of an experiment. For
example, the number of initiating events in one year, the
number of failures to start in 12 demands, and the time
to complete a repair of a pump are all random variables.

If the numbers associated with the outcomes of an
experiment are all distinct and countable, the corre-
sponding random variable is called a discrete random
variable. The number of initiating events and the
number of failures to start are examples of discrete
random variables.

If the sample space contains an infinite number of
outcomes (like those contained in any interval), the
random variable is continuous. Time T is a common
continuous random variable, for example, time to
failure, time between failures, or time to repair, where
the random variable T can assume any value over the
range 0 to -o.

AA.2 Probability Distributions

A continuously distributed random variable has a
density function, a nonnegative integrable function,
with the area between the graph of the function and the
horizontal axis equal to 1. This density function is also
referred to as the continuous probability distribution
function (p.d.f.). If x denotes a value that the continu-
ous random variable X can assume, the p.d.f. is often
denoted asj(x). The probability that X takes a value in
a region A is the integral offtx) over A. In particular,

Pr(a S X S b) = f (x)dx

and

Pr(x !•X 5x + x) zftx)Ax (A.4)

for small Ax. Also,

| f (x)dx = 1

The most commonly used continuous distributions in
PRA are the lognormal, exponential, gamma, and
beta distributions. Section A.7 summarizes the essen-
tial facts about these distributions, and also about less
common but occasionally required distributions:
uniform, normal, Weibull, chi-squared, Inverted
gamma, logistic-normal, Student's I, F, and Diri-
chlet.

A probability function (introduced at the beginning of
Section A.3) associates a probability with each possible
value of a random variable and, thus, describes the
distribution of probability for the random variable. For
a discrete random variable, this function is referred to
as a discrete probability distribution function
(p.d.f.). A discrete p.d.f., commonly denoted byf, is
also referred to as a discrete distribution, or discrete
probability mass function.

If x denotes a value that the discrete random variable X
can assume, the probability distribution function is
often denoted Pr(x). The notation used here is that a
random variable is denoted by an upper-case letter and
an observed or observable value of the random variable
(a number) is denoted by a lower-case letter. The sum
of the probabilities over all the possible values of x
must be 1. Thus, we writeftx) = Pr(X = x), and require
iaxi) = 1.

Certain discrete random variables have wide application
and have therefore been defined and given specific
names. The two most commonly used discrete random
variables in PRA applications are the binomial and
Poisson random variables, which are presented in
Section A.6.

A.4.3 Cumulative Distribution Functions

Discrete probability distributions provide point proba-
bilities for discrete random variables and continuous
p.d.f.s provide point densities for continuous random
variables. A related function useful in probability and
PRA is the cumulative distribution function (c.df.).
This function is defined as the probability that the
random variable assumes values less than or equal to
the specific value x, and is denoted F(x).

For a discrete random variable X, with outcomes x,, and
the corresponding probabilities Pr(x1), F(x) is the sum
of the probabilities of all xi s x. That is,

F(x) = Pr(X <x)=2 Pr(x,).
X*5

For a continuous random variable X. F(x) is the area
beneath the p.d.f.Aftx) up to x. That is, F(x) is the
integral offtx):

F(x) = Pr(X s x) f(y)dy
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If X takes on only positive values, the lower limit of
integration can be set to 0. The upper limit isx, and Ax)
is the derivative of F(x). Note that, because F(x) is a
probability, 0 s F(x) s 1. If X ranges from -- to +,

then

F(-oo) =O and F(+-) = 1.

If X has a restricted range, with a and b being the lower
and upper limits of X respectively, a < X < b, then

F(a) = 0 and F(b) = 1.

Also, F(x) is a nondecreasing function of x, that is,

if x2 > x, F(x2 ) 2 F(x1).

Another important property of F(x) is that

P(x 1< X! x2) = F(x 2) - F(x1)

for discrete random variables and

Pr(x1 • X s x2) = F(x2 ) - F(x,)

for continuous random variables.

An example of a p.d.f. and the associated c.d.f. for a
continuous distribution is shown in Figure A.2.

Hence, R(t), called the reliability at time t, is the
probability that the system does not fail in the time
interval (0, t) or equivalently, the probability that the
system is still operating at time t. (This discussion uses
the notation (a, b) to mean the set of times > a and s b,
but the distinction between < and • is a mathematical
fine point, not important in practice.) The reliability
function is also sometimes called the survival function.
It is equal to I - F(t).

When used as a reliability criterion, it is common to
state a time, say to, called the mnission time, and require
for a system that the reliability at mission time to be at
least some prescribed level, say R1. For example, a
pump might be required to operate successfully for at
least 12 hours with probability at least 0.95. The
requirement in this case is Ro = 0.95 and to = 12. In
terms of the reliability function, this would mean R(12)
2 0.95. One interpretation would be that such a pump
would perform for the required mission time for95% of
the situations when it is called on to do so. Another
interpretation is that 95% of all such pumps would
perform as required.

Consider a system that operates for a particular mission
time, unless it fails. If it fails, no immediate repairs are
attempted, so some authors call the system
nonrepairable. A common way to characterize this
system's reliability is in terms of the hazard function.
Suppose that the system is still operating at time t, and
consider the probability that it will fail in a small
interval of time (t, t + At). This is the conditional
probability Pr(t < T s t + At I T > t). The hazard
function, h, is defined so that when At is small,

h(t)At= Pr(t < T!5 r+ArI T >rt) (A.5)

Time 9

Figure A.2 Probability density function (p.d.f.) and
cumulative distribution function (c.d.f.).

A.4A Reliability and Hazard Functions

A.4.4.1 Definitions

There are also characterizations that have special
interpretations for time-to-failure distributions. Let T
denote the random time to failure of a system. The
reliability function of a system is defined as

This function is also encountered, under the name of A,
in some treatments of Poisson processes. Equation A.5
gives, approximately,

Pr(t<Trt+At)

Pr(T> )

f(t)At

R(t)

This is the basis for the formal definition of h:

f (t)
h(r) =-

R(r)

R(t) = Pr(T> t) .
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For details, see Bain and Engelhardt (1992, p. 541).
Equation A.5 is analogous to Equation AA, except that
the probability in Equation A.5 is conditional on the
system having survived until t, whereas Equation A.4
refers to all systems in the original population, either
still surviving or not. Suppose a large number, say N,
of identical systems are put into operation at time t = 0,
and n is the number which fail in the interval (t, t + At).
It follows that ftt)At =n/N, the observed relative
frequency of systems failed in the interval (t, t + At).
On the other hand, if N, denotes the number of the
original N systems which are still in operation at time t,
then h(t)At n/N,, the observed relative frequency of
surviving systems which fail in this same interval.
Thus,ftt) is a measure of the risk of failing at time t for
any system in the original set, whereas h(t) is a measure
of the risk of failing at time t, but only for systems that
have survived this long.

by the hazard function, h(Q), and the p.d.f. can be
expressed as

f(t) = h(t)exp(-Jo h(u)du) .

Figure A.3 shows the reliability, hazard and the cumula-
tive hazard function for the example of Figure A.2.

11(g) ..

h(l) - - - - .' - -

The hazard function is used as a measure of "aging" for
systems in the population. If h(t) is an increasing
function, then systems are aging or wearing out with
time. Of course, in general the hazard function can
exhibit many types of behavior other than increasing
with time. In actuarial science the hazard function is
called the force of mortality, and it is used as a mea-
sure of aging for individuals in a population. More
generally, the hazard function gives an indication of
"proneness to failure" of a system after time t has
elapsed. Other terms which are also used instead of
hazard function are hazard rate and failure rate. The
term failure rate is often used in other ways in the
literature of reliability [see Ascher and Feingold (1984),
P. 19].

A.4.4.2 Relations among p.d.f., Reliability, and
Hazard

Any one of the functions F, f, R. and h completely
characterizes the distribution, and uniquely determines
the other three functions. The definition

h(t) = f()RQt)

was given above. The right side can be written as the
derivative of - ln[R(t)J, leading to

R(t) = exp(- th(u)du) = exp(-H(t))

where the function H(t) is called the cumulative
hazard function. The reliability function, R(t), and the
c.d.f., FQt) = I - R(t), are therefore uniquely determined

I
0

Figure A.3 The reliability function, hazard function
and cumulative hazard function.

The hazard function in Figure A.3 is an increasing
function of time. Therefore, it would be consistent with
systems with a dominant wear-out effect for the entire
life of the system. The lifetime of a system may be
divided into three typical intervals: the burn-in or
infant period, the random or chance failure period,
and the wear-out period. During the useful period, the
dominant cause of failures is "random" failures. For
example, systems might fail due to external causes such
as power surges or other environmental factors rather
than problems attributable to the defects or wear-out in
the systems. This example is somewhat idealized
because for many types of systems the hazard function
will tend to increase slowly during the later stages of
the chance failure period. This is particularly true of
mechanical systems. On the other hand, for many
electrical components such as transistors and other
solid-state devices, the hazard function remains fairly
flat once the burn-in failure period is over.

A.4AS Joint, Marginal, and Conditional
Distributions

Many statistical methods are based on selecting a
sample of size n from a probability distribution fix).
Such a sample is denoted by

(Xi = x,,2 = X2, ..., X = x) = (xi, X2, ... IX),
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where x,, x2, ..., x, are the actual values of the random
variable X which has the distributionfix).

The concepts of simultaneous events and joint, mar-
ginal, and conditional probability, discussed in Section
A.3, also pertain to random variables and probability
distributions. Two random variables X, and X2 (both
continuous, both discrete, or one of each) can have a
joint distribution, orjoint p.df., denotedftx,,x 2). The
point (x,, x2) can be thought of as a point in two-dimen-
sional Euclidean space. Similarly, n random variables
have joint distribution fix,, x2, ..., x,,). Also, the n
random variables have joint cumulative distribution
F(xl, x2, -... )-

The marginal distribution of X1 is defined as the joint
p.d.f. integrated (for continuous random variables) or
summed (for discrete random variables) over the n- I
other corresponding dimensions, resulting in a function
of x, alone. Thus, the marginal distribution of X, is the
unconditional p.d.f. of X1,fJ.xi).

The conditional distribution of X, given X2, denoted
.x, I x2), is defined by

Jlx'x 2 )= fix,, X2 )

wheref2(x2) # 0. This conditional distribution can be
shown to satisfy the requirements of a probability
function. Sampling from a conditional p.d.f. would
produce only those values of X, that could occur for a
given value of X2 = x2. The concept of a conditional
distribution also extends to n random variables.

Two random variables XI and X2 are independent if
their joint p.d.f. is equal to the product of the two
individual p.d.f.s. That is,

.AXt, X2) =JXI)JX2)-

In general, Xi, X2, ..., X. are independent random
variables if

fiX,. X2, ..., X.) =fix) fiX2 ) -... fix,).

AA.6 Characterizing Random Variables
and Their Distributions

A.4.6.1 DIstribution Characteristics

Probability distributions have many characteristics of
interest, some of which are described by distribution
parameters. The term parameter is used to refer to a

fixed characteristic. In contrast to a statistic, which
changes from sample to sample, a parameter for a
particular distribution is a constant and does not
change. However, when a parameter's value is not
known, sample statistics can be used to estimate the
parameter value. Parameter estimation is discussed in
Appendix B.

A very useful distribution characteristic is the parameter
that serves as a measure of central tendency, which can
be viewed as a measure of the middle of a distribution.
When a change in the parameter slides the distribution
sideways, as with the mean of a normal distribution, the
parameter is referred to as the location parameter. It
serves to locate the distribution along the horizontal
axis. Sometimes, however, a change in the parameter
squeezes or stretches the distribution toward or away
from zero, as with the mean of the exponential distribu-
tion. In that case, the parameter is a scale parameter.

In any case, the most common measure of central
tendency is the mean, ;, of the distribution, which is a
weighted average of the outcomes, with the weights
being probabilities of outcomes. For a discrete random
variable X,

X x, Pr(x,) .

For a continuous random variable X,

X= xf (x)dx .

(In Section A.4.6.2 below, the mean of X will be
denoted E(X), the "expected value" of X.)

Another distribution characteristic commonly used as a
measure of central tendency, or location, is the median.
For a continuous distribution, the median is the point
along the horizontal axis for which 50% of the area
under the p.d.f. lies to its left and the other 50% to its
right. The median of a random variable, X, is com-
monly designated med(X) or x50 and, for a continuous
distribution, is the value for which Pr(X s x50) = .50
and Pr(X 2 x;) = .50. In terms of the cumulative
distribution, F(x5) = .50. The median is a specific case
of the general IOth percentile, xa, for which F(x,) =
a. When the factor of 100 is dropped, x, is called the
a quantile. Along with the median as the 50th percen-
tile (or equivalently, the 0.5 quantile), the 25th and 75th
percentiles are referred to as quartiles of a distribution.
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Figure A.4 shows the quartiles, x0.2 and X.7S, the
median, x050, and the mean. The quartiles and the
median divide the area under the density curve into four
pieces, each with the same area. Note that the mean is
greater than the median in this example, which is the
usual relation when the density has a long right tail, as
this one does.

Each area = 0.25

the horizontai axis where the "peak" or maximum of the
p.d.f. is located. Note that the mode does not necessar-
ily have to be near the middle of the distribution. It
simply indicates the most likely value of a distribution.
Note also that a peak does not have to exist and, in
some cases, more than one peak can exist.

Another important characteristic of a distribution is its
variance, denoted by od. The variance is the average
of the squared deviations from the mean. The standard
deviation, o, of a distribution is the square root of its
variance. Both the variance and standard deviation are
measures of a distribution's spread or dispersion. For
a discrete random variable X,

Ux2 (Xi - prXi)

For a continuous random variable X,

gX
2 =j (x ,u)2f(x)dx.

I Mean'

X0 2 5 x0W5 X0.75 OCCO 432 2

Figure A.4 Density, showing quartiles, median, and
mean.

Figure A.5 shows the same quantities plotted with the
c.d.f. By definition, the q quantile, x,, satisfies F(x,)
= q.

1.00-- - - .~

0.75 --------

0.50 ---

0 i

0.25 ---- A

II

Though less used than the mean and variance, the
skewness is defined as

E(X - p)31o3 -

It measures asymmetry. It is usually positive if the
density has a longer right tail than left tail, and negative
if the density has a longer left tail than right tail. For
example, the density in Figure A.4 has positive skew-
ness.

AA.6.2 Mathematical Expectation

The definitions of distribution means and variances
arise from mathematical expectation and moments of
a distribution, which form an important method for
calculating the parameters of a known p.d.f. In general,
the expectation (expected value or mathematical
expectation) of a function g(X). denoted E[g(X)], is

E[g(X)1 = Z g(x,)Pr(x,),

when X is discrete, and

E[g(X)= | g(x)f (x)dx,

when X is continuous.

XO2 5 X0.50 '0.75 GoM04z 3

Figure A.5 Cumulative distribution function (c.d.f.)
showing quartiles, median, and mean.

The mean and the median are used to measure the
center or location of a distribution. Since the median is
less affected by tail-area probabilities, it can be viewed
as a better measure of location than the mean for
highly-skewed distributions. For symmetric distribu-
tions, the mean and median are equivalent.

A different measure of center or location of a distribu-
tion is the mode, which indicates the most probable
outcome of a distribution. The mode is the point along
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Because of their wide use, several expectations have
special names. For g(X) = X, the expectation E(X)
becomes the mean of X. Thus, the mean is also com-
monly referred to as the expected value (or expectation)
of the random variable X. In addition, for g(X) = X, the
expectation E(X) is known as the first moment about
the origin.

The variance, d 2, also denoted by Var(X), of a distribu-
tion is defined by mathematical expectation with g(X)
= (X - ux)2. Thus,

Var(X) = o, = Ey(X - jXu)2J = E(X2 ) - [E(X)12,

which is known as the second moment about the
mean.

Ordinary moments (moments about the origin) of a
random variable X are defined as

M, = E(X'),

for r = 1, 2, . Thus,

Var(X) = 6= E(X2 ) - [E(X)]2 = M2 - M,2.

. Var(21X,) = St Var(X,), if the Xs are independent.
E(aX + b) = aE(X) + b.
Var(aX + b) = a2Var(X) .
The last two give useful special cases when a = I
or b =0.

A.4.6.3 Moment-Generating Functions

Another special mathematical expectation is the
moment-generating function of a random variable.
For a random variable X with p.d.f. fx), the moment-
generating function of X (or of the distribution) is
defined by MWt) = E(dx), if M exists for some interval
-h < t < h. Therefore, if X is a continuous random
variable,

M(t) euf (x)dx.

If X is a discrete random variable,

M(t)=y et f (x;)

Central moments (moments about the mean) of a
random variable X are defined as being equal to E[(X -
p)1 for r = 2, 3, ... The ordinary and central moments
can be seen to define characteristics of distributions of
random variables.

An important rule of expectation commonly used in
PRA is that the expected value of a product of inde-
pendent random variables is the product of their respec-
tive expected values. That is, E(X,-X2 ... X,,) =
E(XI)*E(X2)- ... -E(X.) when all X, are independent. This
rule also applies to conditionally independent random
variables. If the random variables X2, X3, ..., X. are all
conditionally independent given X, = x,, then

flX2, X3, ---- X IXI ~) =fX2I1XI)_X3IXd)@ :A...'fXl).

It follows that

E(X2X 3 ... Xlx) = E(X21x 1)-E(X 31x,) ... E(Xlx1).

Thus,

E(X, X- -... "= E[XI-E(X2|xI) E(X3XI)- _. -E(X.Ix,)].

The following facts are also often useful:

E(E2, XI) = E, E(X,), whether or not the Xis are
independent.

Note that not every distribution has a moment-generat-
ing function.

The importance of the moment-generating function is
that, when it does exist, it is unique and completely
specifies the distribution of the random variable. If two
random variables have the same moment-generating
function, they have the same distribution.

It can be shown that the moments of a distribution can
be found from the series expansion of M(t). The
moments of the distribution can also be determined
from the moment-generating function by differentiating
the mroment-generating function with respect to t and
setting t = 0. See Martz and Waller (1991) and any of
several mathematical statistics texts, such as Hogg and
Craig (1995), for further details on moment-generating
functions.

A.4.6.4 Covariance and Correlation

For two random variables, X and Y, with means A and
Y~, the expected value E[(X - pg)(Y - /)] is called the
covariance of X and Y, denoted Cov(X, Y). The
covariance of X and Y divided by the product of the
standard deviations of X and Y is called the correlation
coefficient (or correlation) between X and Y, denoted
Cor(X, Y). That is,
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Cor(X, Y) = Cov(X,Y)
( Var(X)Var(Y)

E(X - ix) E[(Y- - *

The correlation coefficient measures the degree of
association between X and Y. that is, the strength of a
linear relationship between X and Y. It is always
between - I and 1. Positive correlation (correlation >
0) means that X and Y tend to be large together and
small together in a linear way. Negative correlation
means that X tends to be large when Y is small and vice
versa, in a linear way. If X and Yare independent, then
their correlation is zero. The converse is not true;
examples can be constructed where X and Y are depend-
ent (in a nonlinear way) yet have zero correlation.

AA.7 Distribution of a Transformed
Random Variable

This section considers the distribution of Y =h(X),
when X has a known distribution and h is a known
function. The problem is straightforward when X has a
discrete distribution. When X is continuous and h is
monotone, either increasing or decreasing, the c.d.f.s
are also related in the natural way, as follows. Let Fbe
the c.d.f. of X and let G be the c.d.f. of Y. Then we
have

G(y) = Pr(Y s y) = Pr[h(X) s y] .

If h is monotone increasing, this equals

Pr[X s h(y)] = F(x),

That is, the density of Y is not simply equal to the
density of X with a different argument. There is also a
multiplier, the absolute value of the derivative.

Two important special cases are given here. If Y =
exp(X), then

g(y) =A[ln(y)](1/y)

If Y= I/X, then

g(y) =J(I/y)(l/Y)-

These formulas form the basis for the densities of the
lognormal distribution and the inverted gamma distri-
bution.

A.5 Bayes' Theorem

It is frequently desired to calculate the probability of an
event A given that another event 8 has occurred at some
prior point in time. It can also be of interest to calculate
the probability that a state of nature exists given that a
certain sample is observed, for example, belonging to a
certain population based on a sample measurement or
observation. Conditional probability leads directly to
Bayes' Theorem, which, along with subjective proba-
bility, forms the basis for Bayesian inference commonly
used in PRA.

Recall the definition of a partition from Section A.3:
A,, A2, ..., A, are a partition of the sample space if the
are mutually exclusive and their union equals the entire
sample space. Bayes' Theorem states that ifA,, A2, ....
A. are a partition of the sample space and if B is any
other event such that Pr(B) > 0, then

where x and y are related by y = h(x), x = h(y). In
summary, G(y) = F(x).

If, instead, h is monotone decreasing, then a similar
argument gives

G(y) = I - F(x) .

Pr(A IB) = Pr(B IA,) Pr(Aj)
Pr(B)

where

Pr(B) = Pr(BIAj) Pr(Aj) .
1J.

(A.6)

The surprise comes with the densities. Differentiate
both sides of either of the above equations with respect
to y, to obtain the density of y. This involves using the
chain rule for differentiation. The result is

AY)= f(x'y .

This last equation is the law of total probability (Sec-
tion A.3). Equation A.6 follows from the definition of
conditional probability in Equation A. 1:

Pr(AJB) = Pr(Bn AJ) Pr(BIAJ) Pr(A,)
ta') - Pr(B) Pr(B)
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The Pr(A, I B) is the posterior (or a posteriori) probabil-
ity for the event Ai, meaning the probability of A, once
B is known. The Pr(Ai) is the prior (or a priori) proba-
bility of the eventAi before experimentation orobserva-
tion. The event B is the observation. The Pr(BjA,) is
the probability of the observation given that A, is true.
The denominator serves as a normalizing constant.

Calculating the posterior probabilities Pr(A1 l B) requires
knowledge of the probabilities Pr(A,) and Pr(BIA,), i =
1, 2, ..., n. The probability of an event can often be
determined if the population is known, thus, the
Pr(B IA,) can be determined. However, the Pr(A1), i = 1,
2, ..., n, are the probabilities that certain states of nature
exist and are either unknown or difficult to ascertain.
These probabilities, Pr(AJ), are called prior probabilities
for the events A, because they specify the distribution of
the states of nature prior to conducting the experiment.

Application of Bayes' Theorem utilizes the fact that
Pr(BIA1) is easier to calculate than Pr(A,|B). If proba-
bility is viewed as degree of belief, then the prior belief
is changed, by the test evidence, to a posterior degree of
belief. In many situations, some knowledge of the prior
probabilities for the events A,, A2, ..., A, exists. Using
this prior information, inferring which of the sets A i, A2,
...,A, is the true population can be achieved by calculat-
ing the Pr(AfB) and selecting the population that
produces the highest probability.

various values 0 prior to and posterior to observing a
value of another random variable X. This is valid
whether "probability of 0' has a frequentist or subjec-
tive interpretation.

A.6 Discrete Random Variables

A.6.1 The Binomial Distribution

The binomial distribution describes the number of
failures X in n independent trials. The random variable
X has a binomial distribution if:

I. The number of random trials is one or more and is
known in advance.

2. Each trial results in one of two outcomes, usually
called success and failure (although they could be
pass-fail, hit-miss, defective-nondefective, etc.).

3. The outcomes for different trials are statistically
independent.

4. The probability of failure, p, is constant across
trials.

Equal to the number of failures in the n trials, a bino-
mial random variable X can take on any integer value
from 0 to n. The probability associated with each of
these possible outcomes, x, is defined by the bino-
mial(n, p) p.d.f. as

Equation A.6 pertains to disjoint discrete events and
discrete probability distributions. Bayes' Theorem has
analogous results for continuous p.d.f.'s. The continu-
ous version is given here. Suppose X is a discrete or
continuous random variable, with p.d.f. depending on
parameter 0, and with conditional p.d.f. of X, given 0,
specified byflxI 0). Suppose that Ohas a continuous
probability distribution with p.d.f. g(0). This can
happen in two ways: either Ois a possible value of the
random variable 9 (using the convention of denoting
random variables with uppercase letters), or else Ois an
uncertain parameter with a subjective uncertainty
distribution. The second case is the more common one.
Call g(O the prior p.df. Then for every x such that
Ax) > 0 exists, the posterior pd.E of 0, given X = x, is

Pr(X = X) = ) ~PX) (I p)flx

x= 0, ... ,n.
Here

(xn) n=
x!(n - x)!

is the binomial coefficient The symbol

n! = n(n -1)(n -2) ... (2)(1)

denotes n factorial, with 0! defined to be equal to 1.
This binomial coefficient provides the number of ways
that exactly x failures can occur in n trials (number of
combinations of n trials selected x at a time).g(ojx)= f(X)

where

f (x) =| f (xJe)g(G)dG

(A.7)

The binomial distribution has two parameters, n and p,
of which n is known. (Although n may not always be
known exactly, it is treated as known in this handbook.)

is the marginal p.d.f. of X. Again, the prior and poste-
rior p.d.f.'s can be used to represent the probability of

The mean and variance of a binomial(n, p) random
variable X are
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E(X) = np

and

Var(X) =np(I - p).

Figure A.6 shows three binomial probability distribu-
tion functions, with parameter p = 0.25, and n = 4, 12,
and 40. In each case, the mean is np. The means have
been aligned in the three plots.

05.

telephone calls occurring. A common use of the
Poisson distribution is to describe the behavior of many
rare event occurrences. The Poisson distribution is also
frequently used in applications to describe the occur-
rence of system or component failures under steady-
state conditions.

The count phenomena that occur as Poisson random
variables are not necessarily restricted tooccurringover
a time interval. They could also be counts of things
occurring in some region, such as defects on a surface
or within a certain material. A process that leads to a
Poisson random variable is said to be a Poisson pro-
cess.

The Poisson distribution describes the total number of
events occurring in some interval of time t (or space).
The p.d.f. of a Poisson random variable X, with parame-
ter A = At, is

Pr(X=x)= #
x !
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(A.8)
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0.12

0.08

an40,>-0.25

forx=0, 1,2, ...,andx!=x(x - 1)(x- 2) ...(2)(1,as
defined previously.

The Poisson distribution has a single parameter pu,
denoted Poisson(.u). If X denotes the number of events
that occur during some time period of length t, then X
is often assumed to have a Poisson distribution with
parameter p = At. In this case, X is considered to be a
Poisson process with Intensity A > 0 (Martz and Waller
1991). The variable A is also referred to as the event
rate (or failure rate when the events are failures).
Note that A has units 1/time; thus, At = p is
dimensionless.

If only the total number of occurrences for a single time
period t is of interest, the form of the p.d.f. in Equation
A.8 using p is simpler. If the event rate, A, or various
time periods, t, are of interest, the form of the p.d.f. in
Equation A.8 using At is more useful.

The expected number of events occurring in the interval
0 to t is p = At. Thus, the mean of the Poisson distribu-
tion is equal to the parameter of the distribution, which
is why p is often used to represent the parameter. The
variance of the Poisson distribution is also equal to the
parameter of the distribution. Therefore, for a Pois-
son(,u) random variable X,

E(X) = Var(X) = ,u = At.

0.04

Figure A.6 Three binomial probability distribution
functions.

A.6.2 The Poisson Distribution

The Poisson distribution provides a discrete probability
model that is appropriate for many random phenomena
that involve counts. Examples are counts per fixed time
interval of the number of items that fail, the number of
customers arriving for service, and the number of
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Figure A.7 shows three Poisson probability distribution
functions, with means p = 1.0, 3.0, and 10.0, respec-
tively. The three means have been aligned in the
graphs. Note the similarity between the Poisson distri-
bution and the binomial distribution when p = np and n
is not too small.

More precise versions of condition 2 are: (1) the
probability of more than one event occurring in a very
short time interval is negligible in comparison to the
probability that only one event occurs (Meyer 1970),
(2) the probability of more than one event occurring in
a very short time interval goes to zero faster than the
length of the interval (Pfeiffer and Schum 1973), and
(3) simultaneous events occur only with probability
zero (rinlar 1975). All of these versions have the
practical interpretation that common cause events do
not occur. The phrase "do not occur" is used in this
handbook, as it is in Thompson (1981).
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The Poisson distribution also can serve as an approxi-
mation to the binomial distribution. Poisson random
variables can be viewed as resulting from an experiment
involving a large number of trials, n, that each have a
small probability of occurrence, p, of an event. How-
ever, the rare occurrence is offset by the large number
of trials. As stated above, the binomial distribution
gives the probability that an occurrence will take place
exactly x times in n trials. If p = A/n (so that p is small
for large n), and n is large, the binomial probability that
the rare occurrence will take place exactly x times is
closely approximated by the Poisson distribution with
A = np. In general, the approximation is good for large
n, small p, and moderate At (say pu s 20) [see Derman et
al. (1973)].

The Poisson distribution is important because it de-
scribes the behavior of many rare event occurrences,
regardless of their underlying physical process. It also
has many applications to describing the occurrences of
system and component failures under steady-state
conditions. These applications utilize the relationship
between the Poisson and exponential (continuous
random variable, see Section A.7.4) distributions: the
times between successive events follow an exponential
distribution.

A.7 Continuous Random Variables

A.7.1 The Uniform Distribution

A uniform distribution, also referred to as a rectangular
distribution, represents the situation where any value in
a specified interval, say [a, b], is equally likely. For a
uniform random variable, X, because the outcomes are
equally likely,flx) is equal to a constant. The p.d.f. of
a uniform distribution with parameters a and b, denoted
uniform(a, b), is

f () = -I
b-a

0 10 20 30 40 50
G0M5S

Figure A.7 Three Poisson probability distribution
functions.

Several conditions are assumed to hold for a Poisson
process that produces a Poisson random variable:

1. For small intervals, the probability of exactly one
occurrence is approximately proportional to the
length of the interval (where A, the event rate or
intensity, is the constant of proportionality).

2. For small intervals, the probability of more than
one occurrence is essentially equal to zero (see
below).

3. The numbers of occurrences in two non-overlap-
ping intervals are statistically independent.
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for a • x s b.

Figure A.8 shows the density of the uniform(a, b)
distribution.

Area = 1

i i l

I

The mean and variance of a normal distribution with
parameters p and oare

E(X) = P

and

Var(X) = d.

The normal distribution is denoted normal(, d).

Figure A.9 shows two normal(g, o) densities. The
distribution is largest at p and is more concentrated
around p when o is small than when ois large.

1I(b-a) F

0
a b Gc0a 0432 6

Figure A.8 Density of uniform(a, b) distribution.

The mean and variance of a uniform(a, b) distribution
are

E(X) = b+a

and

(b-a) 2
Var(X) = 12 -

A.7.2 The Normal Distribution
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Figure A.9 Two normal densities.

One of the most widely encountered continuous proba-
bility distributions is the normal distribution, which has
the familiar bell shape and is symmetrical about its
mean value. The importance of the normal distribution
is due to: (1) its applicability in describing a very large
number of random variables that occur in nature and (2)
the fact that certain useful functions of nonnormal
random variables are approximately normal. Details on
the derivation of the normal distribution can be found
in many basic mathematical statistics textbooks [e.g.,
Hogg and Craig (1995)].

The normal distribution is characterized by two parame-
ters, p and a. For a random variable, X, that is nor-
mally distributed with parameters pi and a, the p.d.f. of
Xis

Note the similarity of the normal density to a binomial
p.d.f. with large np or a Poisson p.d.f. with large .
This illustrates the fact that a normal distribution can
sometimes be used to approximate those distributions.

The normal(O. 1) distribution is called the standard
normal distribution, which, from Equation A.9, has
p.d.f.

0(x) = Iexp(- 2) (A.10)

for -- < x < -. The cumulative distribution of the
standard normal distribution is denoted by <P. Tables
for the standard normal distribution are presented in
Appendix C and in almost all books on statistics.

f (x) = I_ exp[_ I (x X ]_2 (A.9)

for -- < x < o, -- <ja < A and or> 0. Increasing p
moves the density curve to the right and increasing a
spreads the density curve out to the right and left while
lowering the peak of the curve. The units of p and o
are the same as for X.

It can be shown that the transformed random variable Z
= (X - p)/o is normal(O, 1). Thus, to calculate proba-
bilities for a normal(p, d) random variable, X. when p
* 0 and/or 9 it 1, the tables for the standard normal can
be used. Specifically, for any number a,
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Pr[ X:5 a I = Pr[ (X - O) (a -l/~oI

= Pr[ Z s (a - p)/o

= Ot (a -P)/I1. -

Part of the importance of the normal distribution is that
it is the distribution that sample sums and sample means
tend to possess as n becomes sufficiently large. This
result is known as the central limit theorem, which
states that, if X,, X2, ..., X., are independent random
variables, each with mean p and variance o2, the sum of
these n random variables, 1X,, tends toward a nor-
mal(ngu, nd) distribution for large enough n. Since the
sample mean is a linear combination of this sum, the

central limit theorem also applies. Thus, X = EK/n
tends to a normal](, din) distribution. The importance
of the central limit theorem is it can be used to provide
approximate probability information for the sample
sums and sample means of random variables whose
distributions are unknown. Further, because many
natural phenomena consist of a sum of several random
contributors, the normal distribution is used in many
broad applications.

Because a binomial random variable is a sum, it tends
to the normal distribution as n gets large. Thus, the
normal distribution can be used as an approximation
to the binomial distribution. One rule of thumb is that
the approximation is adequate for np 2 5.

A Poisson random variable also represents a sum and,
as presented previously, can also be used as an approxi-
mation to the binomial distribution. It follows that the
normal distribution can serve as an approximation to
the Poisson distribution when p = k is large. One
rule of thumb is that the approximation is adequate for
ja2 5.

A.7.3 The Lognormal Distribution

Use of the lognormal distribution has become increas-
ingly widespread. It is commonly used as a distribution
for failure time and in maintainability analysis (Martz
and Waller 1991). It has also been widely used as a
prior distribution for unknown positive parameters.

The lognormal distribution arises from the product of
many independent random variables. If Y= Y,'Y 2 ... Y.
=IfY, is the product of n independent positive random
variables that are (nearly) identically distributed, then
In(Y) = ln(HY,) = E jIn(Y1) is a sum that tends toward a
normal distribution.

The distribution of Y is defined to be lognormal when
the distribution of In(l) is normal. That is, when Y is
lognormal, ln( ) is norrmal(g 02). The parameters of
the lognormal distribution are p and or, the parameters
from the underlying normal distribution. For a random
variable, Y, that is lognormally distributed with parame-
ters pu and o, denoted lognormal(ju, 02), the p.d.f. of Y
is

f (Y) = exp[ (In y - p)]

forO<y<-,--<ou<-,ando>0. Notetheyinthe
denominator, for reasons explained in Section A.4.7.
The mean and variance of a lognormal(u, 02) distribu-
tion are

E(1) = exp(u + o2/2)

and

Var(l) = exp(2p + o2)[exp(d) - I].

In addition, the median of a lognormal distribution is
exp(ju) and the mode is exp(-0-o2). See Martz and
Waller (1991) for more information on the lognormal
distribution.

Sometimes the median of Y = exp(p) is used as a
parameter. In addition, a parameter commonly used in
PRA is the error factor (EF), where EF= exp( 1.645 o).
This definition causes EF to satisfy

Pr[med(Y)/EF s Y s med(0*EF] = 0.90.

Figure A.10 shows three lognormal densities. The
value jp = -7 corresponds to a median of about 1.E-3.
[More exactly, it corresponds to exp(-7) = 9.E-4.1
The value pu = - 6.5 corresponds to a median of about
1.5E-3. The value or= 0.67 corresponds to an error
factor EF = 3, and o = 1.4 corresponds to an error
factor EF = 10.

The two distributions with r= 0.67 and different values
of p have essentially the same shape, but with different
scales. The larger p corresponds to spreading the
distribution out more from zero. The distribution with
o = 1.4, and therefore EF = 10, has a very skewed
distribution.

To calculate probabilities for a lognormal(u, o2)
random variable, Y, the tables for the standard normal
can be used. Specifically, for any number b,
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Pr[ Y:5 b I = Pr[ln(k) s ln(b) I

= PrI X 5 In(b) I

= 4D[ (In(b) - y)lo],

where X = ln(Y) is normal(p, d).

duration times with different distributions and defines
the hazard rate as h(t) = ft)I[ I - F(t)]. For the expo-
nential distribution, the hazard rate is constant, A. It
can be shown that the exponential distribution is the
only distribution with a constant hazard rate.

II

OEO 1 E-3 2E-3 3E-3
Figure A.10 Three lognormal densities.

A.7.4 The Exponential Distribution

The exponential distribution is widely used for
modeling time to failure and is inherently associated
with the Poisson process [see Martz and Waller
(1991)]. For a Poisson random variable X defining the
number of failures in a time interval t and for a random
variable Tdefining the time to failure, it can be shown
that T has the exponential p.d.f.

0 GCOO 0433 1

Figure A. 11 Two exponential densities.

The c.d.f. of the exponential distribution is

F(t) = I - e-4.

The exponential distribution with parameter A is
denoted exponential(A). The mean and variance of an
exponential(A) distribution are

E(T) = 1/A

and

Var(7) = 11A2.

for t > 0. Thus, the time to first failure and the times
between successive failures follow an exponential
distribution and the number of failures in a fixed time
interval follows a Poisson distribution.

Figure A. 11 shows two exponential densities, for two
values of A . The intercept (height of the curve when t
= 0) equals A. Thus, the figure shows that the distribu-
tion is more concentrated near zero if A is large. This
agrees with the interpretation of A as a frequency of
failures and t as time to first failure.

The exponential distribution parameter, A, corresponds
to the At parameterization of the Poisson p.d.f. in
Equation A.8 and is referred to as the failure rate if the
component or system is repaired and restarted immedi-
ately after each failure. It is called the hazard rate if
the component or system can only fail once and cannot
be repaired. Section AA.4.2 discusses modeling

The relationship of the exponential distribution to the
Poisson process can be seen by observing that the
probability of no failures before time t can be viewed in
two ways. First, the number of failures, X, can be
counted. The probability that the count is equal to 0 is
given by Equation A.8 as

Pr(X =O)=e-& (Ak) = e-j
0!

Alternatively, the probability that first failure time, T, is
greater than t is

Pr(T> t) = 1- Pr(T s t)
= 1 - FQt)
= I - [I -

e~*
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Thus, the two approaches give the same expression for
the probability of no failures before time t.

The assumptions of a Poisson process require a constant
failure rate, A , which can be interpreted to mean that
the failure process has no memory (Martz and Waller
1991). Thus, if a device is still functioning at time t, it
remains as good as new and its remaining life has the
same exponential(I) distribution. This constant failure
rate corresponds to the flat part of the common bathtub
curve (frequency of failures plotted against time) and
does not pertain to initial (bum-in) failures and wear-
out failures.

A different, sometimes useful, parameterization usesjp
= 11A = E(T). For example, if T represents a time to
failure, u is called the mean time to failure. If T is the
time to repair, or to fire suppression, or to some other
event, the name for p is the mean time to repair, or
other appropriate name. The exponential(u) distribu-
tion for T has density

for t 20 6 O and parameters a > O and fl > 0. The
parameter Ois a location parameter and corresponds to
a period of guaranteed life that is not present in many
applications (Martz and Waller 1991). Thus, 0 is
usually set to zero. The c.d.f. for T is

F(t) =1e+ t,6

for t 2 Oand a> O andA> O.

The a parameter is a scale parameter that expands or
contracts the density along the horizontal axis. The /
parameter is a shape parameter that allows for a wide
variety of distribution shapes. [See Martz and Waller
(1991) for further discussion and examples.] When /
= 1, the distribution reduces to the exponential distribu-
tion. Therefore, the Weibull family of distributions
includes the exponential family of distributions as a
special case.

At) = (l//,)exp( -tiu), for t 2 0

and c.d.f.

F(t) = I - exp(-t/,p), for t 2 0 .

The units of ju are the same as the units of t, minutes or
hours or whatever the data have. The mean and vari-
ance are

A Weibull distribution with parameters a, /, and 0 is
referred to as Weibull(a; A, A0 and, when 0 = 0,
Weibull(a, /). The mean and variance of the Weibull
distribution are given by Martz and Waller (1991) as

O+ ar(l + 1/

and

E(7) = /
var(7) =;i.

A.7-5 The Weibull Distribution

The Weibull distribution is widely used in reliability
and PRA and generalizes the exponential distribution to
include nonconstant failure or hazard rates (Martz and
WaIler 1991). Different Weibull distributions have
been successfully used to describe initial failures and
wear-out failures. The Weibull distribution is appropri-
ate when a system is composed of a number of compo-
nents, and system failure is due to any one of the
components failing. It, therefore, is commonly referred
to as a distribution corresponding to failure of the
weakest link.

For a random variable, T, that has a Weibull distribu-
tion, the p.d.f. is

f ()= (a-) + F at- 3a (~a" e a

a?[r(I + 2/,Mb - r2(I + top})

Here, r is the gamma function, defined in Section
A.7.6.

Figure A. 12 shows four Weibull densities, all with the
same scale parameter, a, and all with location parame-
ter 0= 0. The shape parameter, /Q varies. Whenfl< 1,
the density becomes infinite at the origin. When A= 1,
the distribution is identical to the exponential distribu-
tion. Surprisingly, the distribution is not asymptotically
normal as/ becomes large, although it is approximately
normal when 1 is near 3.

A.7.6 The Gamma and Chi-Squared
Distributions

The gamma distribution is an extension of the expo-
nential distribution and is sometimes used as a failure
time model (Martz and Waller 1991). It is also often
used as a prior distribution in Bayesian estimation (see
Appendix B) of the failure rate parameter A from
Poisson(k) or exponential(A) data. The chi-squared
distribution is a re-expression of a special case of the
gamma distribution.
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Figure A. 12 Four Weibull densities, all having O= 0
and all having the same v.

The gamma distribution arises in many ways. The
distribution of the sum of independent exponential(A4)
random variables is gamma, which forms the basis for
a confidence interval for A from exponential(A) data.
Because the sum of n independent exponentially
distributed random variables has a gamma distribution,
the gamma distribution is often used as the distribution
of the time, or waiting time, to the nth event in a Pois-
son process. In addition, the chi-squared distribution is
the distribution for a sum of squares of independent,
identically distributed normal random variables, which
forms the basis for a confidence interval for the vari-
ance of a normal distribution. The gamma distribution
is also often used as a distribution for a positive random
variable, similar to the lognormal and Weibull distribu-
tions. In PRA work, it is often used as a Bayesian
distribution for an uncertain positive parameter.

Two parameterizations of the gamma distribution are
common, with various letters used for the parameters.
The parameterization given here is most useful for
Bayesian updates, the primary use of the gamma
distribution in this handbook. For a random variable, T,
that has a gamma distribution, the p.d.f. is

f(t)= - ta - aexp(-rfl)r (a)

fort, aeand8> 0.

Here

IF (a) = f xae dx

is the gamma function evaluated at a. If a is a posi-
tive integer, I(a) = (a- l)!.

A gamma distribution with parameters a and f is
referred to as gamma(ea, 8). The mean and variance of
the gamma(a, /) random variable, T, are:

E(T) = cd

and

Var(7) = al/i2 .

The parameters aand flare referred to as the shape and
scale parameters. The shape parameter a allows the
density to have many forms. If a is near zero, the
distribution is highly skewed. For ao= 1, the gamma
distribution reduces to an exponential(l ') distribution.
Also, the gamma(a= n/2, 6= Vi) distribution is known
as the chi-squared distribution with n degrees of
freedom, denoted 2(n). The p.d.f. for the j(n) distri-
bution is found by substituting these values into the
above formula for the gamma p.d.f. It also can be
found in many statistics texts [e.g., Hogg and Craig
(1995, Chapter 4)].

In addition, if T has a gamma(ai, A distribution, then
2PThas ae(2a) distribution, which forms the defining
relationship between the two distributions. The gamma
and chi-squared distributions can, therefore, be viewed
as two ways of expressing one distribution. Since the
chi-squared distribution usually is only allowed to have
integer degrees of freedom, the gamma distribution can
be thought of as an interpolation of the chi-squared
distribution.

Percentiles of the chi-squared distribution are tabulated
in Appendix C. These tables can be used as follows to
find the percentiles of any gamma distribution. The
looxp percentile of a gamma(a, /1) distribution is
2j,(2a)1(2jf), where 2,(2a) denotes the lOOxp percen-
tile of the chi-squared distribution with 2a degrees of
freedom.

Figure A. 13 shows gamma densities with four shape
parameters, a. When a < 1, the density becomes
infinite at 0. When a = 1, the density is identical to an
exponential density. When a is large, the distribution
is approximately a normal distribution.

As stated previously, the sum of exponential lifetimes
or waiting times has a gamma distribution, with the
shape parameter a equal to the number of exponential
lifetimes. Also, it has been stated that in general the
sum of independent, identically distributed random
variables is approximately normal. This is the reason
why the gamma distribution is approximately normal
when a is large.
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fl- ( I )a+]
f (W) = r (a) ;; ex4 - -IW -

---- a= 0.5
-a=1
- -- a=2
- -- a=3

I

for w, a, and /> 0. The parameters here are the same
as for the gamma distribution. For example, if T has
units of time then w and p both have units l/time. A
comparison of this density with the gamma density
shows that this density has an extra w2 in the denomi-
nator, for reasons explained in Section A.4.7.

The parameters of the inverted gamma distribution are
a and / and this distribution is denoted inverted
gamma(a, pl). Just as with the gamma(a, A3 distribu-
tion, ais the shape parameter and flis the scale parame-
ter. The distribution can also be parameterized in terms
of r=/3'.

The mean and variance of an inverted gamma(a, p)
random variable, W, are

GCMO 04333
0

Figure A. 13 Gamma densities with four shape param-
eters.

An alternative parameterization of the gamma distribu-
tion uses the scale parameter, say r= A1'. If T has a
gamma(a, r) distribution, its p.d.f. is

f (t) = rP(a - 'exp(-t / r)

E(W) = a> 1,

and

Var(W) = ( I a>2.(a- 1) 2(a- 2)

for t, a, and r > 0. The mean and variance of the
gamma(a, ) random variable, T, are:

E(7) =ar

and

Var(7) = at'.

Note that for a s I the mean and higher moments do
not exist. For I < a s 2 the mean exists but the vari-
ance does not exist (Martz and Waller 1991).

Figure A.14 shows four inverted gamma distributions,
all having the same scale parameter, A, and having
various shape parameters, a.

This alternative parameterization is useful in a very
small portion of this handbook.

A.7.7 The Inverted Gamma and Inverted
Chi-Squared Distributions

The inverted gamma distribution is often used as a
prior distribution for Bayesian estimation of the mean
of an exponential distribution (Martz and Waller 1991).
It is also used as a prior and posterior distribution for 02
when the data have a normal distribution with variance
02 (Box and Tiao 1973, Lee 1997).

For a gamma(a, ,8) random variable, T, W= 1/Thas an
inverted gamma distribution with p.d.f.

: I

:i . .. a=0.5K' -a=1
ii

MCCO 4S
Figure A. 14 Four inverted gamma densities, having the
same scale parameter, A and various shape parameters,

I.
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In the special case with ¢= n/2 and 6= Yi, the distribu-
tion is called the inverted chi-squared distribution
with n degrees of freedom. Values from this distribu-
tion are sometimes denoted Z2(n). This form of the
distribution is often used in connection with a prior for
d when the data are normally distributed.

becomes infinite at 0.0, and when / < 1, the density
becomes infinite at I.0. When a= ,6= i1, the density is
uniform. When ¢ and f are large, the density is ap-
proximately normal.

A.7.8 The Beta Distribution

Many continuous quantitative phenomena take on
values that are bounded by known numbers a and b.
Examples are percentages, proportions, ratios, and
distance to failure points on items under stress. The
beta distribution is a versatile family of distributions
that is useful for modeling phenomena that can range
from 0 to I and, through a transformation, from a to b.

-a= 0.5,fi= 0.5
l ~~-a=1,=

-- a=2,,8=2
2$ 2

,~~~6 6

~~/

/X :

.- A.' -.- '..-

The beta distribution family includes the uniform
distribution as well as density shapes that range from
decreasing to uni-modal right-skewed to symmetric to
U-shaped to uni-modal left-skewed to increasing (Martz
and Waller 1991). It can serve as a model for a reliabil-
ity variable that represents the probability that a system
or component lasts at least t units of time. The beta
distribution is also widely used in Bayesian estimation
and reliability analysis as a prior distribution for the
binomial distribution parameter p that represents a
reliability or failure probability.

The p.d.f. of a beta random variable, Y, is

r(an)ri)

for O s y s 1, with the parameters a, 6> 0. The distri-
bution is denoted beta(am A). The gamma functions at
the front of the p.d.f. form a normalizing constant so
that the density integrates to 1.

The mean and variance of the beta(a, /3) random
variable, Y, are

a

and

0 0.5
G=0 0433 4

Figure A. 15 Beta distributions with mean = 0.5.

Figure A.16 shows densities with mean 0.1. Again,
when a < 1, the density becomes infinite at 0.0, and
when a> 1, the density is zero at 0.0. As the parame-
ters a and 0 become large, the density approaches a
normal distribution.

.a=0.5.=4.5

Q A- =2,0=18
-! v-c=3, f=27

0 0.1 02 03 0.4 0.5
GCMU04 5

Figure A. 16 Four beta distributions with mean 0.1.

Another parameterization of the beta distribution uses
the parameters xo = a and no = a + 0. This parameteri-
zation is used by Martz and Waller (1991) because it
simplifies Bayes formulas and Bayesian estimation.
The p.d.f. of a beta(xo, no) is

Var(Y) = a28
(a+fl) 2(a+/I+1)

Various beta distributions are shown in Figures A.15
and A. 16. Figure A.15 shows beta densities with a=0,
and therefore with mean 0.5. When a< 1, the density

r(xo)r(no- x.)

for 0 s y s 1, with the parameters xO and no satisfying

no> xo > 0.
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The mean and variance of the beta(xo, no) random
variable, Y, are

E(Y) = Xo
no

and

Var(Y) = x0(l 0- X)n302(130 + I)

Percentiles of the beta distribution occur in the formula
for a confidence interval for p, and in the formula for a
Bayes credible interval for p when a conjugate prior is
used. Some percentiles are tabulated in Appendix C.
In addition, many software packages, including some
commonly used spreadsheets, can calculate these
percentiles. If none of these work, Martz and Waller
(1991) give a method for finding the beta percentiles
from the corresponding percentiles of an Fdistribution,
discussed in Section Al7.11. The F distribution is
tabulated in most statistics books, and can be interpo-
lated if necessary with good accuracy. The relation is

betaf(o sml = an [d + 6Ft -(2,8, 2d)]

for small 9, and

Properties of the logistic-normal distribution are
summarized here.

* Lety=ln[xt(l - x)). Thenx=el/(I +el). This
implies that x must be between 0 and 1.

* As x increases from 0 to 1, y = ln[x/(l - x)] in-
creases monotonically from - to +-. Thus, y can
be generated from a normal distribution with no
problem of forcing x outside its possible range.

* The monotonic relation between x and y means that
the percentiles match. For example, the 95th
percentile of Y is p + 1.645a. Denote this by yo.95.
Therefore, the 95th percentile of X is
Xe195 = exp( Y095) / [I + exp( y095)J.
Alternatively, this can be written as
yo.95 = ln~xas, / (1 - &os )1 .

* If X is close to 0 with high probability, so that
XI(1 - X) is close to X with high probability, then
the logistic-normal and lognormal distributions are
nearly the same.

The third bullet shows how to find the percentiles of a
logistic-normal distribution. Unfortunately there is no
equally easy way to find the moments, such as the mean
or variance. Moments must be found using numerical
integration.

beta,( , /) = aF,(2a. 23) / [03+ aFq(2 a, 2/))]

for large q. Here betaq,(a, ) denotes the q quantile, or
the 100xq percentile, of the beta(a; A) distribution, and
Fq(d,, d2) denotes the q quantile of an F distribution
with d, and d2 degrees of freedom. So if all else fails,
and a statistics book with F tables is nearby, the first
formula can be used to find the lower percentile of the
beta distribution and the second formula can be used to
find the upper percentile. This method is not discussed
further here, because it is not expected to be needed
often.

A.7.9 The Logistic-Normal Distribution

While not widely used in PRA, this distribution is
commonly used forBayesian inference in other fields of
application, especially as a prior for the binomial
parameter p when p could plausibly be fairly large. X
has a logistic-normal distribution if In[XI(I - X)] is
normally distributed with some mean pand variance d;.
The function ln(XI(1 - X)] may appear strange, but it is
common enough in some areas of application to have a
name, the logit function. Therefore, the above state-
ments could be rewritten to say that X has a logistic-
normal distribution if logit(X) is normally distributed.

Figure A.17 shows several logistic normal distributions
that all have median 0.5. These correspond to a nor-
mally distributed y with mean p = 0 and with various
values of a. Figure A. 18 shows several logistic normal
distributions that all have median 0.1. These corre-
spond to a normally distributed y with mean p = -2.2 =
ln[0Q1/(l - 0.1)].

00 02 OA 0f 0.6 1.0

Figure A. 17 Three logistic-normal densities with
median = 0.5.
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-o= 0.5
- cr=1
- c=2

0.0 0.1 0.2 0.3 0.4 05

Figure A.18 Three logistic-normal densities with
median = 0.1.

Although not needed for ordinary work, the p.d.f. and
first two moments of T are given here. ISee many
standard texts, such DeGroot (1975) orBain and Engel-
hartd (1992).1 The p.d.f. is

ff) r[(d+ 1)/21 [1 ( 2 /2)]-(dll)12
(d~r) 12r~dI/2)

If d > I the mean is 0. If d > 2 the variance is dl(d-2).
If d 5 2 the variance does not exist. If d = 1, even the
mean does not exist; in this case the distribution is
called a Cauchy distribution.

A.7.11 F Distribution

The F distribution, also called Snedecor's F distribu-
tion, arises as follows. If Y and Z are independent chi-
squared random variables with m and n degrees of
freedom, respectively, then

Ylm
X Zin

has an F distribution with m and n degrees of freedom.
This is sometimes written as an F(m, n) distribution.
This can be re-expressed in terms of a ratio of gamma-
distributed variables, because the chi-squared distribu-
tion is a special case of a gamma distribution.

The density of an F distribution is almost never needed,
although it is given in mathematical statistics books as

r [(m + n) / 2lm 2nhl 2 X(m/2-l

f(x) = r(m l 2)1 (n / 2) (nmx + n)("+f)I 2

Note the general similarities to the beta distributions in
Figures A. 15 and A. 16. Note also the differences:
Logistic-normal distributions are characterized most
easily by percentiles, whereas beta distributions are
characterized most easily by moments. Also, the beta
densities can be i-shaped or U-shaped, but the logistic-
normal densities always drop to zero at the ends of the
range.

A.7.10 Student's t Distribution

The Student's t distribution is not used in a central way
in PRA. However, it appears in a peripheral way in
places in this handbook, when dealing with the parame-
ters of a normal or lognormal distribution, or in large-
sample situations when a distribution is approximated
as normal or lognormal. Therefore, the basic facts are
summarized here.

If (1) Z has a standard normal distribution, (2) X has a
chi-squared distribution with d degrees of freedom, and
(3) Z and X are statistically independent, then

z

has a Student's tdistribution withddegreesoffreedom.
Therefore, Thas a distribution that is symmetrical about
0, and it can take values in the entire real line. If d is
large, the denominator is close to 1 with high probabil-
ity, and Thas approximately a standard normal distribu-
tion. If d is smaller, the denominator adds extra vari-
ability, and the extreme percentiles of Tare farther out
than are the corresponding normal percentiles. Tables
of the distribution are given in Appendix C.

for x 2! O. Bain and Engelhardt (1992) give the mo-
ments:

E(X) = nl(n - 2)

2n 2 (m + n- 2)
ma(n -( 2 ) 2 (n 4 )

The mean is defined only if n > 2, and the variance only
if n>4.

It follows from the definition in terms of a ratio of chi-
squared variables that the percentiles are related to each
other as follows. If F,(m, n) is the q quantile (that is,
the lOOq percentile) of an F(m, n) distribution, then

F,(m, n) = IIFI - (n. m). (A.11)
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The F distribution is also related to the beta distribu-
tion, and Equation (A. 11) forms the basis for the two
different forms of the relation given near the end of
Section A.7.8.

The distribution is not tabulated in Appendix C for two
reasons: the distribution is used only minimally for the
applications in this handbook, and the percentiles and
probabilities are given by many commonly used soft-
ware packages.

A.7.12 Dirichlet Distribution

The Dirichlet distribution is a multivariate generaliza-
tion of the beta distribution. Let m variables Y,, ..., Y.
be such that EY, = 1. Their distribution can be de-
scribed in terms of any m - I of them, such as Y.....
Y.,, with

rn-I

The m variables have a Dirichlet distribution with
parameters a_, ..., a, if the joint density of the first m -
I variables is

f (Y,,.-., .- ,) = r (; +.. lwa.
ffY's sY')r(a,) .. ria,,)

Observe that when m = 2 this reduces to a beta distri-
bution for Y, with parameters a, and a:2. (Some authors
say that Y,, ..., Y. have the Dirichlet distribution, while
others say that Y,, ..., Y,, have this distribution. The
distribution is the same whichever way it is described.)

Many of the properties of the distribution are described
most easily in terms of an additional parameter a,
defined as a= a, + ... + a;,. Some of these properties
are the following.

Individually, each Y, has a beta(a;, a - a,) distribution.
Therefore, we have

E(Y,) = a,/a, and

Var(Y,) =a,(a - ,)I[a2(a+ 1)].

It can also be shown that the covariance terms arc given
by

Cov(Y,, Y.) = -a,/aJ[d(a+ 1)].

Thus, the ratio of each A, to a determines the corre-
sponding mean. Once the means are fixed, the magni-
tude of a determines the variances and covariances,
with large a corresponding to small variances. The
covariances are negative, meaning that if one variable
is larger than its mean, each other variable tends to be
smaller than its mean; this is not surprising for variables
that must sum to 1.

One application of the Dirichlet distribution in PRA is
to multiple-branch nodes in event trees. If an event tree
has a node with m branches, m > 2, the probability of
the ith branch (also called the ith "split fraction") can be
denoted p,. The probabilities must satisfy p, + ... + p,,,
= 1. They are not known exactly, and therefore are
assigned a joint distribution that describes their uncer-
tainty in a Bayesian way. The Dirichlet distribution is
a natural distribution to use.

For further information about this distribution, see the
article in the Encyclopedia of Statistical Sciences, or
Kotz, Balakrishnan, and Johnson (2000).

I
i

Ii

i
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B. BASICS OF STATISTICS

B.1 Random Samples

When sampling from a distribution (or population), it is
usually assumed that the n observations are taken at
random, in the following sense. It is assumed that the
n random variables X,, X2, ..., X. are independent. That
is, the sample XI, X2, ..., X., taken from a distribution
.Ax), has the joint p.d.f. h satisfying

h(x,, x2, ..., x,) =Ax,) *fAx 2) ... . Ax.).

This follows the definition of independent random
variables given in Section A.4.5. A sample taken in this
way is called a random sample. (As elsewhere in this
handbook, upper case letters denote random variables
and lower case letters denote particular values, num-
ber.)

The random variables X,, X2, ..., X, forming such a
random sample are referred to as being independent and
identically distributed. If n is large enough, the sain-
pled values will represent the distribution well enough
to permit inference about the true distribution.

B.2 Sample Moments

Mathematical expectation and moments provide charac-
teristics of distributions of random variables. These
ideas can also be used with observations from a random
sample from a distribution to provide estimates of the
parameters that characterize that distribution.

A statistic is a function of one or more random vari-
ables that does not depend on any unknown parameters.
A function of random variables that can be computed
from the collected data sample is thus a statistic. Note
that a function of random variables is also a random
variable that has its own probability distribution and
associated characteristics.

U n- I
(B.I)

is the variance of the random sample. Note that n -
I is used as the denominator in the S2 statistic to make
the statistic an unbiased estimator of the population
variance, d (unbiased estimators are discussed in
Section B.4.1). Some authors use n in the denominator
instead of n - 1, with corresponding adjustment of
formulas that involve S, but this handbook uses Equa-
tion B.1 consistently. In applications with computer
packages, note which definition is used and make any
necessary adjustments to formulas in this handbook.

Although not used as much as the sample mean and
sample variance, the sample skewness is occasionally
of interest. The definition can vary in detail, but one,
used by SAS (1988) is

(n - 1(n - 2) i, (X' /S

Similarly, the statistics defined by

m,= g-,
i n

for r = 1, 2, ..., are called the sample moments.

One of the common uses of statistics is estimating the
unknown parameters of the distribution from which the
sample was generated. The sample mean, or average,
Y, is used to estimate the distribution mean, or popu-
lation mean, A. the sample variance, S2, is used to
estimate the population variance, do, and so forth.

If XI, X2, ..., X. denote a random sample of size n from
a distributionJ(x), the statistic

X
-= i
I., n

is the mean of the random sample, or the sample
mean and the statistic

B.3 Statistical Inference

Since values of the parameters of a distribution are
rarely known, the distribution of a random variable is
rarely completely known. However, with some assump-
tions and information based on a random sample of
observations from the distribution or population, values
of the unknown parameters can often be estimated.
Probabilities can then be calculated from the corre-
sponding distribution using these parameter estimates.
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Statistical inference is the area of statistics concerned
with using sample data to answer questions and make
statements about the distribution of a random variable
from which the sample data were obtained. Parameter
estimators are functions of sample data that are used to
estimate the distribution parameters. Statements about
parameter values are inferred from the specific sample
to the general distribution of the random variable or
population. This inference cannot be perfect; all
inference techniques involve uncertainty. Understand-
ing the performance properties of various estimators has
received much attention in the statistics field.

For the purposes of this handbook, statistical inference
procedures can be classified as follows:

* parameter estimation
- estimation by a point value
- estimation by an interval

• hypothesis testing
- tests concerning parameter values
- goodness-of-fit tests and other model-validation

tests.

Parametric statistical inference assumes that the
sample data come from a particular, specified family of
distributions, with only the parameter values unknown.
However, not all statistical inference is based on
parametric families. In many cases, in addition to not
knowing the distribution parameter values, the form of
the parametric family of distributions is unknown.
Distribution-free, also called nonparametric, tech-
niques are applicable no matter what form the distribu-
tion may have. Goodness-of-fit tests are an important
type of nonparametric tests that can be used to test
whether a data set follows a hypothesized distribution.

For statistical inference, two major approaches exist,
the frequentist approach and the Bayesian approach.
The two resulting sets of inference tools are summa-
rized in Sections B.4 and B.5. In PRA work, Bayesian
estimators are normally used for parameter estimation.
See, for example, NUREG-1489 (NRC 1994). How-
ever, frequentist hypothesis tests are often used for
model validation, especially when the hypothesis to be
tested does not involve a simple parameter. This use of
Bayesian techniques for estimation and frequentist
techniques for model validation is also recommended
by Box (1980).

NUREG-1489 (NRC 1994) lists a number of "advan-
tages" and "disadvantages" for each of the Bayesian
and frequentist approaches. An "advantage" is often in
the eye of the beholder. For example, is it an advantage
or disadvantage that frequentist methods use only the

data at hand, not external or prior information? There-
fore, the lists from that report are presented in modified
and augmented form in Table B. 1, where the points are
not called advantages or disadvantages, but simply
"features."

B.4 Frequentist Inference

Frequentist estimation of distribution parameters uses
only the information contained in the data sample and
assumptions about a model for the sample data. In
contrast to Bayesian estimation (discussed in Section
B.5), degree of belief is not incorporated into the
estimation process of frequentist estimation.

In the frequentist approach to estimation, a distribution
parameter is treated as an unknown constant and the
data to be used for estimation are assumed to have
resulted from a random sample. Information outside
that contained in the sample data is used minimally.
The random variability in the sample data is assumed to
be due directly to the process under study. Thus, the
frequentist approach addresses variation in parameter
estimates and how far estimates are from the true
parameter values.

Frequentist testing of a hypothesis follows the same
spirit. The hypothesis is assumed, and the data are
compared to what would have been expected or predic-
ted by the hypothesis. The frequentist analyst asks whe-
ther the observed values come from the likely part of
the distribution or from the extreme tails, and decides in
this way whether the data are consistent with the
hypothesis.

BA.1 Point Estimation

Many situations arise in statistics where a random
variable X has a p.d.f. that is of known functional form
but depends on an unknown parameter O that can take
on any value in a set The different values for 0
produce a family of distributions. One member of the
family corresponds to each possible value of 0.
Estimators of the distribution parameter are functions
of sample data that are used to estimate the distribution
parameters. Thus, estimators are themselves random
variables. The specific value of the estimator computed
from a random sample provides an estimate of the
distribution parameter. Note the distinction between
estimator, a random variable, and estimate, a particular
value. An estimate of a distribution parameter in the
form of a single number is called a point estimate of
that parameter. The sample mean is a point estimate of
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Table B.1 Features of Bayesian and frequentist approaches.

[iBayesian Approach Frequentdst Approach

Bayesian methods allow the formal introduction of prior Results depend only on the data sample. Including
information and knowledge into the analysis, which can relevant information about a parameter that is external to
be especially useful when sample data are scarce, such as the random sample is complicated.
for rare events. For the nuclear industry, this knowledge
often exists in the form of industry-wide generic data.
Thus, Bayesian estimation allows the use of various types
of relevant generic data in PRA.

If the prior distribution accurately reflects the uncertainty
about a parameter, Bayesian parameter estimates are
better than classical estimates.

Bayesian estimation can be sensitive to the choice of a
prior distribution. Therefore:
Identifying suitable prior distributions and justifying and
gaining acceptance for their use can be difficult.
The choice of a prior distribution is open to criticism that
the choice is self-serving and may reflect inappropriate,
biased, or incorrect views.

Because Bayesian probability intervals can be interpreted A confidence interval cannot be directly interpreted as a
as probability statements about a parameter, they are probability that the parameter lies in the interval.
easily combined with other sources of uncertainty in a
PRA using the laws of probability.

Bayesian distributions can be propagated through fault It is difficult or impossible to propagate frequentist
trees, event trees, and other logic models. confidence intervals through fault and event tree models

common in PRA to produce corresponding interval
estimates on output quantities of interest.

Using Bayes' Theorem, Bayesian estimation provides a Frequentist methods can update an earlier analysis if the
method to update the state of knowledge about a parame- original data are still available or can be reconstructed.
ter as additional data become available.

In complicated settings, Bayesian methods require In complicated settings, frequentist methods must use
software to produce samples from the distributions. approximations. In some cases they may be unable to

analyze the data at all.

Bayesian hypothesis tests are commonly used only with A well-developed body of hypothesis tests exists, useful
hypotheses about a parameter value. for model validation. These are appropriate for investi-

gating goodness of fit, poolability of data sources, and
similar questions that do not involve a simple parameter.

Both Approaches

When the quantity of data is large, both approaches produce good estimates.

Both types of computation are straightforward when estimating a parameter in a simple setting.
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the mean of the distribution and the sample variance is
a point estimate of the variance of the distribution. For
another sample drawn from the same population, a
different sample mean and variance would be calcu-
lated. In fact, these sample statistics are specific values
of random variables. Thus, viewed as random variables
the sample statistics have their own sampling distribu-
tions. For example. it can be shown that X has mean
u and variance din, regardless of the distribution from
which the samples are drawn.

Different techniques exist for obtaining point estimates
for unknown distribution characteristics or parameters.
Two of the most common methods are presented here
[see Hogg and Craig (1995) for more information]:
maximum likelihood estimation and the method of
moments.

A distribution of a random variable X that depends on
an unknown parameter Owill be denotedftx; 0. If XI,
X2, ..., X. is a random sample from ftx; l, the joint
p.d.f. of XI, X2, ..., X. is Ax,; &)flx 2 ; 0- ... fix.; 0.
This joint p.d.f. may be viewed as a function of the
unknown parameter 0 and, when so viewed, is called
the likelihood function, L, of the random sample.
Thus, the likelihood function is the joint p.d.f. of X,, X2 ,

..., X, denoted

L(FXXX 2 -...,X.) = f(xi;

viewed as a function of 0. The maximum likelihood

estimate of 8is defined as the value 6 such that L( 0;
xl, X2, ..., x.) 2 L(6O x, x2, ..., x.) for every value of 0.

That is, the maximum likelihood estimate of 0 is the

value 0 that maximizes the likelihood function. In
many cases, this maximum will be unique and can often
be obtained through differentiation. Note that solving
the derivative set to zero for a may be easier using
ln(L), which is equivalent since a function and its
natural logarithm are maximized at the same value of
0.

The maximum likelihood estimate is a function of the
observed random sample xi, x2, ... , x.. When t is
considered to be a function of the random sample X,,

X2,..., X,, then 6 is a random variable and is called the
maximum likelihood estimator of 0.

Another method of point estimation is the method of
moments, which involves setting the distribution
moments equal to the sample moments:

M, = E(X') = m, = ,x,/n.

for r = 1, 2, ..., k, if the p.d.f. ix-, 01, 0, ..., has k
parameters. The k equations can be solved for the k

unknowns 0,, 62 ..., 0 and the solutions 6,, Q 2
are the method-of-moments estimators.

How "well" a point estimator estimates a parameter has
received a large amount of attention. Numerous desir-
able properties of point estimators exist. One desirable
property of estimators, alluded to previously in Section
B.2, is unbiasedness. An unbiased estimator is one
whose mean value is equal to the parameter being

estimated. That is, an estimator 6 is unbiased for a

parameter O if E( 6) = 0. For a random sample from
a normal distribution, the sample mean, X, and the
sample variance, S2, are unbiased estimators of u and
od, respectively. (Recall that S2 is defined by Equation
B.1, with n - 1 in the denominator.) However, the
method of moments estimator of the variance is biased.

The bias of an estimator 1 is defined as E(0) - 6.

Minimum variance is another desirable property of an
estimator. An unbiased estimator is said to have
minimum variance if its variance is less than or equal to
the variance of every other unbiased statistic for 0.
Such an estimator is referred to as an unbiased, mini-
mum variance estimator.

Another desirable property of estimators is suMciency.
For a random sample X,. X2, ..., X. fromjjx; 0,, 62*
6.), and i, 6 ",..., 0. functions (statistics) of the Xis,

the statistics 61,, 2, ..., 6d are jointly sufficient statis-
tics if the conditional p.d.f. of the X~s given the statistics

Is, g(x,,x 2, ...,I XMA1,,..., p,), is independent of the
parameters (Martz and Waller, 1991).

Sufficiency can be thought of as exhausting all the
possible information about a parameter that is contained
in the random sample. When a sufficient statistic exists,
it may serve as the basis for a minimum variance or
"best" estimator of the parameter. Sufficiency is also
important because it simplifies Bayesian estimation
methods.

Under certain commonly occurring conditions, as the
sample size gets large, the maximum likelihood
estimator is approximately normally distributed, ap-
proximately unbiased, and has approximately the
minimum variance. It is, therefore, a very good
estimator for large data sets. The maximum likelihood
estimator is not necessarily good for small data sets.
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Several other methods of estimation and desirable
properties for estimators exist. Further information can
be found in Hogg and Craig (1995) or Kendall and
Stuart (1973).

BA.2 Interval Estimation

Another way of estimating a parameter is to identify
that it falls in some interval (icl, uci) with a specified
degree of certainty, or confidence, where Ild denotes the
lower confidence limit and uci denotes the upper
confidence limit. The interval (IcE, ucli) is referred to as
an interval estimate of the parameter. The Icl and ucl
values are calculated from the random sample from the
given distribution. Associating a level of desired
confidence with an interval estimate produces a confi-
dence interval. The level of desired confidence is also
referred to as the confidence coefficient.

Confidence intervals are based on estimators associated
with a random sample (functions of the data), LCL for
the lower confidence limit and UCL for the upper
confidence limit, such that, prior to observing the
random sample, the probability that the unknown
parameter, b, is contained in the interval [LCL, UCLJ is
known. That is,

Pr[LCL s O: UCLJ = I - a

Confidence intervals cannot be interpreted as probabil-
ity statements about the parameter being estimated,
because the parameter is assumed to be an unknown
constant and not a random variable. The level of
confidence pertains to the percentage of intervals, each
calculated from a different random sample from the
same distribution, that are expected to contain the true
parameter value. The confidence does not pertain to
the specific calculated interval (it could be from the
unlucky 5% of intervals that do not contain the true
parameter value).

As an example, a confidence interval for the parameter
p can be produced from a random sample drawn from
a normal(1u o;) population by calculating the appropri-
ate functions of the data. Recall that, if each sample
value is drawn from a normal distribution, the sample

mean X has a normal(p. din) distribution, where n is
the sample size. Even if the sample values are drawn
from a distribution that is not normal, by the central
limit theorem, X will be approximately normal(A
din) for sufficiently large n. Assuming that o; is
known (from previous data and experience), the stan-
dardized normal random variable

Z= X - ,oX-jL

for 0< a< 1.

Once the random sample has been generated, the
functions LCL and UCL produce two values, Ilc and
uc!. The interval (clE, uci) is called a two-sided confi-
dence interval with confidence level I - ¢, or equiva-
lently, a 100(1 - &)% two-sided confidence interval.
Similarly, upper one-sided confidence intervals or
lower one-sided confidence intervals can be defined
that produce only an upper or lower limit, respectively.

Since the true parameter value, although unknown, is
some constant, the interval estimate either contains the
true parameter value or it does not. A 95% confidence
interval is interpreted to mean that, for a large number
of random samples from the same distribution, 95% of
the resulting intervals (one interval estimate of the same
population parameter constructed the same way for
each sample) would contain the true population parame-
ter value, and 5% of the intervals would not. The oa=
.05 risk of obtaining an interval that does not contain
the parameter can be increased or decreased. Values
for I - ashould be decided upon prior to obtaining the
random sample, with .99, .95, and .90 being typical.
Note that higher confidence levels result in wider
interval estimates.

is normal(0, 1), and tabulated in Appendix C. From
these tables, values of w can be found for which

Pr[-wgZ:~w] = I - a. (B.2)

For example, for a = .05, w = 1.96. In this case, w is
the 97.5th percentile of the standard normal distribu-
tion, commonly denoted zo9 5, or z -. for a= .05.

Substituting for Z in Equation B.2 above, along with
some algebraic manipulation, produces

Pr[X - W or <,a< XY+ w or]= 1- a.

which defines a 100(1 - a)% confidence interval for
the population mean pA where

LCL= X - we (B.3)

and

UCL= X + wf. (BA4)
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with w = z,2. B.4.3 Hypothesis Testing

A random sample will yield a specific sample mean.
The numbers w and n are known, and owas assumed to
be known. Therefore, for a preassigned confidence
level, values for LCL and UCL can be calculated to
produce a specific 100(1 - a)% confidence interval for
pu. Each of the random variables LCL and UCL is a
statistic, and the interval (LCL, UCL) is a random
interval formed from these statistics.

Usually the value of o is not known. In this case, the
unbiased estimator of the population variance, S2, can
be used to produce S. which can be used in the above
equations in place of a Thus, the following standard-
ized random variable, T, can be formed:

T=T

(This formula requires the definition of S based on
Equation B.I.) For sufficiently large n (say 25 or 30),
T follows a normal(0, 1) distribution. If n is not suffi-
ciently large, T follows a Student's t distribution, for
which tabulated probabilities exist in many statistics
books, and in Appendix C. The Student's t distribution
depends on a parameter called the degrees of freedom.
In the present example, this parameter equals n - 1.
Confidence intervals for the population mean can then
be calculated similarly to the case where o is known,
using either the Student's t distribution or, when n is
large, the normal distribution.

Confidence intervals can also be constructed for differ-
ences of means and many other population parameters,
such as variances, probabilities, quantiles, and distribu-
tion characteristics (see, for example, Hogg and Craig
1978).

Testing a statistical hypothesis is another major area of
statistics. A hypothesis is a statement about the distri-
bution of the observable random variable. Often this
statement is expressed as a statement about one or more
parameters of the distribution. As discussed previously,
estimation uses information in the data from a random
sample to infer something about the magnitude of a
parameter value. Similar to estimation, hypothesis
testing also uses information from the random sample.
However, the objective of hypothesis testing is to
determine whether the specific statement about the
distribution is true.

The hypothesis to be tested is referred to as the null
hypothesis, denoted by Ho. The alternative to the null
hypothesis is referred to as the alternative hypothesis,
denoted Hi or H. A test of a hypothesis is a rule or
procedure for deciding whether to reject or accept the
null hypothesis. This rule or procedure is based upon
information contained in the random sample and
produces a single number, called a test statistic, which
leads to a decision of whether the sample values do not
support Ho. The entire set of values that the test statis-
tic may assume is divided into two regions, one corre-
sponding to the rejection region and the other to the
acceptance region.

If the test statistic computed from a particular sample
has a value in the rejection region, H. is rejected. If the
test statistic falls in the acceptance region, H. is said to
be accepted, due to lack of evidence to reject. For each
of the two possible cases for H,,, true or false, the test
either rejects or does not reject Ho, producing four
distinct possibilities. These possibilities (using condi-
tional probability notation), along with some concepts
and terms associated with hypothesis testing, are
summarized in Table B.2 (Martz and Waller, 1991).

Table B.2 Possible hypothesis test outcomes.

He True H, False

Accept Ha Pr(accept Ho I Ho is true) = I- a Pr(accept Ho I Ho is false) = 0
= Level of confidence = Pr(Type II Error)

Reject H. Pr(reject Ho I Ho is true) = a Pr(reject H. I Ho is false) = 1-,8
= Level of significance = Power
= Pr(Type I Error)
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A stated null hypothesis is either true dr false. One of
two errors can occur in hypothesis testing:

1. rejection of the null hypothesis when it is true,
referred to as the Type I error; and

2. acceptance of the null hypothesis when it is false,
referred to as the Type II error.

The probability of making a Type I error, denoted by
¢, is referred to as the significance level of the test.
Thus, I - ¢ is the probability of making a correct
decision when H. is true. The probability of making a
correct decision when Ho is false, denoted I - A, is
referred to as the power of the test. The probability of
making a Type H error is equal to one minus the power
of the test, or a.

The goodness of a statistical hypothesis test is measured
by the probabilities of making a Type I or a Type II
error. Since a is the probability that the test statistic
will fall in the rejection region, assuming Ho to be true,
increasing the size of the rejection region will increase
a and simultaneously decrease id for a fixed sample
size. Reducing the size of the rejection region will
decrease a and increase /f. If the sample size, n, is
increased, more information will be available for use in
making the decision, and both a and fl will decrease.

For the example presented in the previous section,
Section B.4.2, the 100(1 - a)% two-sided confidence
interval for a population mean is defined by the LCL
and UCL in Equations B.3 and B.4. For the hypothe-
sized value of the mean, say pik if A < Ild or K > ucl,
Ho would be rejected. Equivalently, the test statistic in
Equation B.2 can be computed using pu = fi and, for
a= .05, if it is greater than 1.96 or less than -1.96, Ho
would be rejected with 95% level of confidence.

To further illustrate these concepts, a more detailed
example is presented. Atwood et al. (1998) assert that
for non-momentary losses of offsite power with plant-
centered causes, the recovery times are lognormally
distributed with median 29.6 minutes and error factor
10.6. This is equivalent to X being normally distributed
with p = ln(29.6) = 3.388 and or= ln(10.6)/1.645 =
1.435, where X = In(recovery time in minutes). Sup-
pose that a plant of interest has experienced five such
losses of offsite power in recent history. It is desired to
test whether the plant's recovery times follow the
claimed distribution.

To simplify the situation, the question is formulated in
terms of p only, assuming that a= 1.435. The null
hypothesis is

Ho: u = 3.388 .

The probability of making a Type II error, A, varies
depending on the true value of the population parame-
ter. If the true population parameter is very close to the
hypothesized value, a very large sample would be
needed to detect such a difference. That is, the proba-
bility of accepting Ho when Ho is false, A, varies de-
pending on the difference between the true value and
the hypothesized value. For hypothesis tests, a is
specified prior to conducting the random sample. This
fixed 4a specifies the rejection region. For a deviation
from the hypothesized value that is considered practical
and that is wished to be detectable by the hypothesis
test, a sample size can be selected that will produce an
acceptable value of /3.

Different alternative hypotheses will result in different
rejection regions for the same Ho. This is seen most
easily for a hypothesis that is expressed in terms of a
parameter, for example, Ho: u = A for some given
value A0. In this case, there is an exact correspondence
between one-sided and two-sided confidence intervals
and rejection regions for one-sided and two-sided
alternative hypotheses. If the hypothesized value falls
outside a 100(1 - a)% confidence interval for the
corresponding population parameter, the null hypothe-
sis would be rejected with level of confidence equal to
I - a.

Because only long recovery times are of concern from
a risk standpoint, the alternative hypothesis is defined
as

H,: p>3.388.

That is, values <3.388 are possible, but are not of
concern. The test statistic, based on n = 5 recovery
times, is to reject H. if

X - 3.388

Z 1.435Jf / -

To make a, the probability of Type I error, equal to
0.05, w is chosen to be the 95th percentile of the
standard normal distribution, 1.645. Then the test can
be re-expressed as rejecting Ho if

> 4.44 .

The upper part of Figure B. I shows the density of X
when pi = 3.388. The area to the right of 4.44 is

Pr(X > 4.44 1 Ho is true),

which equals 0.05.
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What if Ho is false? For example, a median 60-minute
recovery time corresponds to p = ln(60) = 4.09. The
lower part of Figure B. I shows the density of X when
p = 4.09. The area to the right of 4.44 is

1

0.8

0.6

Pr(Y > 4.44 1 u" = 4.09),

LI- - I, - - -

~~~I n-jO

p ~

* ~~~~~I /

Z
.-~~

"=5

0.4

which is equal to 0.29. This value represents the power
of the hypothesis test when A = 4.09 and is the proba-
bility of (correctly) rejecting H.. The probability of a
Type II error when p = 4.09 is I - 0.29 = 0.71.

0.2

a .-3 Ao 4 5 8
GMO 043 a/A

/
Figure B.2 Power curves when n = 5 and n = 10. The
graph shows the probability of rejecting H., as a
function of the true p.
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Figure B. I Probability of rejecting Ho: p = 3.388, if in
fact Ho is true (upper distribution), and if Ho is false
with p = 4.09 (lower distribution).

It can be useful to plot the power as a function of .
The plot is called a power curve. Figure B.2 shows
two power curves, corresponding to n = 5 and n = 10.
The probability of Type I error, that is, the probability
of rejecting Ho when Ho is true, is shown as a. The
probability of Type II error, that is, the probability of
accepting Ho when Ho is false, is shown as fi for one
value of A and equals I minus the power. The two
tests, with n = 5 and n = 10, have both been calibrated
so that a= 0.05. The power, for any value of p in H.,
is larger when n = 10 than when n = 5; equivalently, the
probability of Type II error is smaller.

The interpretation of confidence in hypothesis testing is
also the same as with confidence intervals. That is, the
confidence is not in one specific test statistic. The
confidence arises from the viewpoint that if the random
sample was collected a number of times in the same
way and if H. was true, 100(1 - a)% of the tests would
result in not rejecting H ..

As can be seen, interval estimation and hypothesis
testing are closely related. Some experimenters prefer
expressing inference as estimators. Others preferto test
a particular hypothesized value for the parameter of
interest.

B.4.4 Goodness-of-Fit Tests

The methods presented above are concerned with
estimating the parameters of a distribution, with the
actual form of the distribution assumed to be known (or
the central limit theorem applies with large n). Other
hypothesis tests do not assume that only a parameter is
unknown. In particular, goodness-of-fit tests are
special hypothesis tests that can be used to check on the
assumed distribution itself. Based on a random sample
from some distribution, goodness-of-fit tests test the
hypothesis that the data are distributed according to a
specific distribution. In general, these tests are based
on a comparison of how well the sample data agree with
an expected set of data from the assumed distribution.

Perhaps the most familiar goodness-of-fit test is the chl-
square test. The test statistic used for this statistical
test has an approximate x2 distribution, leading to the
name of the test. A random sample of n observations,
X,, X2, ..., X,, can be divided or binned into k groups or
intervals, referred to as bins, producing an empirical
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distribution. The assumed distribution under the null
hypothesis,fo(x), is used to calculate the probability that
an observation would fall in each bin, with the probabil-
ities denoted by pi, p2, *-.p p.-

These probabilities are frequently referred to as cell
probabilities. The k bins are also called cells. The k
bin intervals do not overlap and they completely cover
the range of values offo(x). It follows that E.,p, = 1.
The expected frequency of the ith bin, denoted ea, is e,
= nip, for i = 1, 2, ..., k. The e, are commonly referred
to as the expected cell counts. The observed frequen-
cies for each of the k bins, denoted 0,, are referred to as
observed cell counts.

The chi-square goodness-of-fit test compares the
observed frequencies to the corresponding expected
frequencies for each of the k groups by calculating the
test statistic:

X 2 E (O. _ * )2

i-l e,

If the observations come from some distribution other
than that specified in the null hypothesis, the observed
frequencies tend to agree poorly with the expected
frequencies, and the computed test statistic, X2, be-
comes large.

The distribution of the quantity X2 can be approximated
by a chi-square distribution. The parameter that speci-
fies the chi-square distribution is called the degrees of
freedom. Its value depends on the number of unknown
parameters and how they are estimated. When the null-
hypothesis distribution is completely specified, such as
normal with both p and a known, the degrees of free-
dom are k - 1. If, instead, Ho specifies the form of the
distribution but not the parameters, the degrees of
freedom must be adjusted. In the example, if X and S2

from the sample are used to estimate ja and 9 when
testing the distribution, the degrees of freedom are
between k - I and k - 1 - m, where m is the number of
estimated parameters, 2. If the quantity X2 is greater
that the 1 - aquantile of the (kr - 1) distribution, the
hypothesized probability distribution is rejected. If X2

is less than the I - a quantile of the j(k - I - m)
distribution, the data are concluded to be adequately
modeled by o(x).

When the sample size is small, the x distribution still
applies as long as the expected frequencies are not too
small. Larger expected cell counts make the chi-square
distribution approximation better. The problem with
small expected frequencies is that a single random

observation falling in a group with a small expected
frequency would result in that single value having a
major contribution to the value of the test statistic, and
thus, the test itself. In addition, small expected frequen-
cies are likely to occur only in extreme cases. One rule
of thumb is that no expected frequency should be less
than I (see Snedecor and Cochran, 1989). Two ex-
pected frequencies can be near I if most of the other
expected frequencies are greater than 5. Groups with
expected frequencies below I should be combined or
the groups should be redefined to comply with this rule.
Note that k is the number of groups after such combina-
tion or redefinition.

Comparing how well sample data agree with an ex-
pected set of data leads to another common use of the
chi-square test: testing whether two or more classifica-
tion criteria, used to group subjects or objects, are
independent of one another. Although not a goodness-
of-fit test, the chi-square test for independence is
similar to the chi-square goodness-of-fit test.

For two grouping criteria, the rows of a two-way
contingency table can represent the classes of one of
the criteria and the columns can represent the classes of
the other criterion. To test the hypothesis that the rows
and columns represent independent classifications, the
expected number, e,,, that would fall into each cell of
the two-way table is calculated and used to compute the
following chi-square test statistic:

x 2 =y (0j_-E E) 2

i.} EU

wherei= 1,2,...,r(thenumberofrows);j= 1,2,...,c
(the number of columns); and O is the number ob-
served to belong to the ith row and jth column. The e,,
are calculated by

e#= ,

where R, and Cl are the total observed in the ith row and
jth column, respectively, and n is the total sample size
(n = ERI = IC.

For this test, the e test statistic follows a chi-square
distribution with (r - 1)(c - 1) degrees of freedom. If
the calculated X2 exceeds the I - a quantile of the e
distribution with (r - 1)(c - 1) degrees of freedom. the
null hypothesis of independence is rejected and the
rows and columns are concluded to not represent
independent classifications.
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The Kolmogorov goodness-of-fit test tests the hypoth-
esis that the observed random variable has c.d.f. Fo(x),
versus the alternative hypothesis that the observed
random variable does not have c.d.f. Fo(x). It does this
by comparing the sample c.d.f. (the empirical distribu-
tion function) to the hypothesized c.d.f. For a random
sample of n observations, X,, X2, ..., X., the test statistic
is defined as the maximum vertical distance between the

empirical c.d.f., F(x) and Fo(x). The actual procedure
for calculating the test statistic can be found in many
statistics texts, including Martz and Waller (1991) and
Conover (1999). The test statistic is then compared to
the I - aquantile of tabled values for the Kolmogorov
test, e.g. in Table C. If the calculated test statistic
exceeds the I - a quantile, the hypothesized c.d.f. is
rejected. Otherwise, Fo(x) is concluded to describe the
data. The Kolmogorov goodness-of-fit test is based on
each individual data point and therefore is equally
effective for small or large samples.

As an example, consider the previous example of loss-
of-offsite-power recovery times. Suppose that five
recovery times have been observed at the plant: 7, 22,
94,185, and 220 minutes. The corresponding values of
x = ln(recovery time in minutes) are 1.95, 3.09, 4.54,
5.22, and 5.39. The null hypothesis and alternative
hypothesis are:

Ho: X is normal with pi = 3.388, v= 1.A35
HI: X has some other distribution .

Note, all possible alternative distributions are consid-
ered, notjust normal distributions, or distributions with
a= 1.435.

Figure B.3 shows the distribution function specified by
Ho (the smooth curve) and the empirical distribution
function specified by the data (the step function). The
maximum distance between the two distributions is D,
the Kolmogorov test statistic. If D is large, the test
rejects Ho in favor of H,.

If the sample size is small, the Kolmogorov test may be
preferred over the chi-square test. The Kolmogorov
test is exact, even for small samples, while the chi-
square test is an approximation that is better for larger
sample sizes. The Kolmogorov statistic can also be
used to construct a confidence region for the unknown
distribution function.

The Kolmogorov goodness-of-fit test is sometimes
called the Kolmogorov-Smirnov one-sample test.
Statistics that are functions of the maximum vertical
distance between F(x) and Fo(x) are considered to be

Kolmogorov-type statistics. Statistics that are functions
of the maximum vertical distance between two empiri-
cal distribution functions are considered to be Smirnov-
type statistics. A test of whether two samples have the
same distribution function is the Smirnov test, which is
a two-sample version of the Kolmogorov test presented
above. This two-sample test is also called the
Kolmogorov-Smirnov two-sample test Conover
(1999) presents additional information and tests.

1.0 r - - -

0.8 f

0.6 [

/
0.4

02 [
0.0 ----

0 1 2 3 4 5 6
GCO 0433 10

Figure B.3 The hypothesized distribution, the empir-
ical distribution, and the Kolmogorov test statistic, D.

Another useful goodness-of-fit test is the Anderson-
Darling goodness-of-fit test and test for normality. The
Anderson-Darling test measures the squared difference
between the empirical distribution function (EDF) of a
sample and the theoretical distribution to be tested. It
averages this squared difference over the entire range of
the random variable, weighting the tails more heavily
than the center. This statistic is recommended to guard
against wayward observations in the tail and has gener-
ally good power.

Because many statistical methods require the assump-
tion of normality, some assessment of whether data
come from a normal population is helpful when consid-
ering appropriate analysis techniques. The Anderson-
Darling statistic provides a measure of how much
normal probability scores for the data (normal probabil-
ity plot values) deviate from a straight line that would
arise under normality. A computer package is often
used to calculate this statistic and compare it to tabled
values for the statistic. If the calculated statistic is too
high, the deviations from the straight line are too large
to be attributed to the variation due to sampling obser-
vations from a normal distribution. Thus, the hypothe-
sis of normality is rejected. See Stephens (1982) for
more information on the Anderson-Darling goodness-
of-fit test.
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Certain patterns of deviations from lihearity in normal
probability plots indicate common types of nonnormal
characteristics, such as skewness or kurtosis (presence
of long or short tails of the p.d.f.). Test for skewness or
kurtosis are also available. See Snedecor and Cochran
(1989) for more information on these tests.

tion, as discussed in Section B.4.1. Using the likeli-
hood function, the fundamental relationship expressed
by Bayes' Theorem is

Posterior Distribution =
Prior Distribution x Likelihood

Marginal Distribution

B.5 Bayesian Estimation

B.5.1 Purpose and Use

Bayesian estimation is the other major class of statisti-
cal inference methods. Similar to frequentist estima-
tion, both point and interval estimates can be obtained.
However, Bayesian estimation is different from classi-
cal estimation in both practical and philosophical
perspectives (NRC, 1994). Bayesian estimation incor-
porates degree of belief and information beyond that
contained in the data sample, forming the practical
difference from classical estimation. The subjective
interpretation of probability forms the philosophical
difference from frequentist methods.

The prior belief about a parameter's value is contained
in what is referred to as the prior distribution, which
describes the state of knowledge (or subjective proba-
bility) about the parameter, prior to obtaining the data
sample. Therefore, in the Bayesian approach, the
parameters of the sampling distribution have probability
distributions. These probabilities do not model random
variability of the parameters, but the analyst's degree of
belief about the true values of the unknown parameters.
The distributions are sometimes called "uncertainty
distributions." A Bayesian uncertainty distribution
satisfies all the rules of a probability distribution.

Bayesian estimation consists of two main areas, both of
which use the notion of subjective probability. The first
area involves using available data to assign a subjective,
prior distribution to a parameter, such as a failure rate.
The degree of belief about the uncertainty in a parame-
ter value is expressed in the prior distribution. This
assignment of a prior distribution does not involve the
use of Bayes' Theorem. The second area of Bayesian
estimation involves using additional or new data to
update an existing prior distribution. This is called
Bayesian updating, and directly uses Bayes' Theorem.

Bayes' Theorem, presented in Section A.5. can be seen
to transform the prior distribution by the effect of the
sample data distribution to produce a posterior distri-
bution. The sample data distribution,.AxI 0), can be
viewed as a function of the unknown parameter, instead
of the observed data, xi, producing a likelihood func-

The marginal distribution serves as a normalizing
constant.

In Bayesian updating, the sampling distribution of the
data provides new information about the parameter
value. Bayes' Theorem provides a mathematical
framework for processing new sample data as they
become sequentially available over time. With the new
information, the uncertainty of the parameter value has
been reduced, but not eliminated. Bayes' Theorem is
used to combine the prior and sampling distributions to
form the posterior distribution, which then describes the
updated state of knowledge (still in terms of subjective
probability) about the parameter. Point and interval
estimates of the parameter can then be obtained di-
rectly from the posterior distribution, which is viewed
as containing the current knowledge about the parame-
ter. This posterior distribution can then be used as the
prior distribution when the next set of data becomes
available. Thus, Bayesian updating is successively
implemented using additional data in conjunction with
Bayes' Theorem to obtain successively better posterior
distributions that model plant-specific parameters.

Bayesian point and interval estimates are obtained from
both the prior and posterior distributions. The interval
estimates are subjective probability intervals, or
credible intervals. The terminology is not yet univer-
sally standard. Berger (1985) and Bernardo and Smith
(2000) both use the term credible Interval, but Box
and Tiao (1973) use Bayes probability interval,
Lindley(1965) uses Bayesian confidence interval, and
other authors have used other terms. A credible interval
can be interpreted as a subjective probability statement
about the parameter value, unlike classical interval
estimates. That is, the interpretation of a 95% Bayesian
posterior probability interval (a, b) is that, with 95%
subjective probability, the parameter is contained in the
interval (a, b), given the prior and sampling distribu-
tions.

B.5.2 Point and Interval Estimates

Bayesian parameter estimation involves four steps. The
first step is identification of the parameter(s) to be
estimated, which involves consideration of the assumed
distribution of the data that will be collected. The
second step is development of a prior distribution that
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appropriately quantifies the state of knowledge concern-
ing the unknown parameter(s). The third step is collec-
tion of the data sample. The fourth and final step is
combining the prior distribution with the data sample
using Bayes' Theorem, to produce the desired posterior
distribution.

For PRA applications, determining the prior distribu-
tion is usually based on generic data and the data
sample usually involves site-specific or plant-specific
operating data. The resulting posterior distribution
would then be the site-specific or plant-specific distri-
bution of the parameter.

The plant-specific data collected are assumed to be a
random sample from an assumed sampling distribution.
The data are used to update the prior, producing the
posterior distribution. Point estimates, such as the most
likely value (the mode), the median, or (most corn-
monly) the mean value, and probability interval esti-
mates of the parameter can then be obtained. Other
bounds and other point values can also be obtained with
the Bayesian approach because the posterior parameter
distribution is entirely known and represents the avail-
able knowledge about the parameter.

Bayesian interval estimation is more direct than classi-
cal interval estimation and is based solely on the
posterior p.d.f.. A symmetric 100(1 - a)% two-sided
Bayes probability Interval estimate of the parameter
is easily obtained from the ai2 and I - at2 quantiles of
the posterior distribution. Lower and upper one-sided
Bayes probability interval estimates can similarly be
calculated. Again, note that the Bayes interval esti-
mates are explicit probability statements of the true
parameter being contained in the interval.

In some applications, such as a planned facility, plant-
specific data do not exist. In these cases, Bayes'
Theorem is not used. Only the generic data are used
and parameter estimates are based solely on the as-
sumed prior distribution. Investigation of the sensitivity
of the results to the choice of the prior distribution is
important for these cases.

B-53 Prior Distributions

The prior distribution is fundamental to any Bayesian
analysis and represents all that is known or assumed
about the parameter Oprior to collecting any data. The
information summarized by the prior distribution can be
objective, subjective, or both. Operational data and
data from a previous but comparable experiment could
be used as objective data. Subjective information could
involve personal experience and opinions, expert

judgement, assessments of degree of belief, and design
information.

The selection of prior distributions can be seen to be
somewhat subjective. A particular prior must be
evaluated to determine the sensitivity of the choice of
that prior on the parameter estimates. Consistency of
the prior information and data with the prior distribu-
tion must be tested.

Choices for the initial prior distribution and techniques
for handling various kinds of data are described in
detail in several references, such as Martz and Waller
(1991), Raiffa and Schlaifer (1961), and Siu and Kelly
(1998).

B.5.3.1 Noninformative Prior Distributions

One class of prior distributions that is widely used is
termed noninformative priors, also referred to as
priors of ignorance, or reference priors (Bernardo and
Smith 1994). These names refer to the situation where
very little a priori information about a parameter is
available in comparison to the information expected to
be provided by the data sample, or there is indifference
about the range of values the parameter could assume.

One might think that this indifference could be ex-
pressed by a prior distribution that is uniformly distrib-
uted over the interval of interest. Every value in the
interval is equally likely and no knowledge about any
specific value over another value is imposed.

However, uniform distributions do not necessarily best
reflect true noninformativeness (Box and Tiao 1973),
because models can be parameterized in various ways.
For example, if the time to failure, T, is exponentially
distributed, it is common to write the density of T as

f(t)= Ae -'

or alternatively as

I -t/j.U
f )=-

/I

The two parameters are related by 2 = 1L

A uniform distribution cannot be said to automatically
reflect ignorance and be used as a standard
noninformative prior distribution. For the exponential
example here, ignorance of A implies ignorance of A,
but A and p cannot both have a uniform distribution. In
fact, suppose that A has the uniform distribution in
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some finite range, say from a to b. Then At has a
density proportional to 1/p in the range from Ilb to
I/a, as stated in Appendix A.4.7. The distribution of jp
is not uniform.

Jeffreys' rule (Jeffreys 1961) guides the choice of
noninformative prior distributions and provides the
Jeffreys prior distribution (Box and Tiao, 1973). The
Jeffreys prior distribution is commonly used in PRA
and involves using a specific parameterization of the
model (distribution). Jeffreys' method is to transform
the model into a parameterization that is in terms of a
location parameter, a parameter that slides the distri-
bution sideways without changing its shape. (See Box
and Tiao 1978, Secs. 1.2.3 and 1.3A). This method
then uses the uniform distribution as the noninformative
prior for the location parameter. It is reasonable to
regard a uniform distribution as noninformative for a
location parameter. The distribution for any other
parameterization is then determined, and is called
noninformative.

In the exponential example, working with log(time), let
O= log(pu), S = log(7), and s = log(t). Using algebraic
formulas given in Section A.4.7 of Appendix A, it can
be shown that the density in this parameterization is

f (s) = exp(s - O)eexs - )

Because 6 only appears in the expression s - 0, a
change in 0 simply slides the distribution sideways
along the s axis. Therefore, His a location parameter.
The Jeffreys noninformative prior is a uniform distribu-
tion for 0. This distribution translates to a density for
A which is proportional to 11/, and a density for p
which is proportional to 1/p. These are the Jeffreys
noninformative prior distributions for Al and p.

A further argument for Jeffreys prior distributions is
that the resulting Bayes intervals are numerically equal
to confidence intervals (Lindley 1958), and the confi-
dence intervals are based on the data alone, not on prior
belief. Unfortunately, the above approach cannot be
followed exactly when the data come from a discrete
distribution, such as binomial or Poisson. The original
parameter can only approximately be converted to a
location parameter. The resulting distribution is still
called the Jeffreys prior, however, even though it only
approximates the Jeffreys method.

To avoid the appearance of pulling prior distributions
out of the air, the general formula for the Jeffreys prior
is stated here, as explained by Box and Tiao (1973) and
many others. All the particular cases given in this

handbook can be found by working out the formula in
those cases. Let Odenote the unknown parameter to be
estimated. Let L(0, x) denote the likelihood corre-
sponding to a single observation. It is a function of 0,
but it also depends on the data, x. For example, x is the
number of Poisson events in a single unit of time, or the
number of failures on a single demand, or the length of
a single duration. Calculate

-- ln[L(&x)J -

Now replace the number x by the random variable X,
and evaluate the expectation of the calculated deriva-
tive:

5-do ln[L(&,X)]
4ldO2n ~ J)

The Jeffreys noninformative prior is a function of 0
proportional to the square root of this expectation.

B.5.3.2 Conjugate Prior Distributions

A conjugate prior distribution is a distribution that
results in a posterior distribution that is a member of the
same family of distributions as the prior. Therefore,
conjugate prior distributions are computationally con-
venient. The methodology for obtaining conjugate
priors is based on sufficient statistics and likelihood
functions (see Martz and Waller, 1991).

The beta family of distributions is the conjugate family
of prior distributions for the probability of failure of a
component in a binomial sampling situation. The
resulting posterior beta distribution can then be used to
provide point and interval estimates of the failure
probability.

A time-to-failure random variable is often assumed to
follow an exponential distribution, with the failure
events arising from a Poisson process. For this model,
with either exponential or Poisson data, the gamma
family of distributions is the conjugate family of prior
distributions for use in Bayesian reliability and failure
rate analyses.

Figure BA is a schematic diagram showing the relation
of the kinds of priors that have been mentioned so far.
There are many nonconjugate priors. A relatively small
family of priors is conjugate, typically a single type
such as the gamma distributions or beta distributions.
Finally, the Jeffreys noninformative prior is a single
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distribution, shown in the diagram by a dot. In many
cases, the Jeffreys prior is also conjugate, as indicated
in the figure.

All priors

Jeffreys prior

Figure B.4 Schematic diagram of types of priors.

A popular nonconjugate prior is the lognormal distribu-
tion. It can be used as a prior distribution for both the
binomial sampling and Poisson process models above,
although it is not conjugate.

Conjugate prior distributions provide convenience, but
accurate modeling of prior degree of belief should not
be sacrificed for mathematical convenience. However,
when one expression of prior belief is viewed to be as
correct as another, the more convenient expression is
usually selected for use.

B5.3.3 Other Prior Distribution Approaches

The prior distribution is the distribution of degree of
belief before data that provide new information are
obtained. Usually, the prior probabilities do not have
a direct frequency interpretation and cannot be experi-
mentally confirmed.

When the prior distribution does have a frequency
interpretation, the observed data can be used to estimate
the prior distribution. This situation represents another
class of methods of statistical inference called empiri-
cal Bayes methods. The empirical Bayes prior distribu-
tion is empirically determined, for example, using
observed plant-specific data for a given set of plants.
Bayes' Theorem can then be applied to combine this
prior with observed data from a specific plant to pro-
duce a posterior distribution. Thus, empirical Bayes
methods are useful when data from similar, but not

identical, sources exist. This situation also gives rise to
the use of so-called hierarchical Bayes methods (see
Gelman, et al., 1995, and Carlin and Louis, 1996).

Attempts have been made to remove some of the
subjectivity present in selecting prior distributions, with
the goal being to obtain one distribution for the same
given information. That is, different analysts using the
same information would decide upon the same prior
distribution. The result has been development of the
method of maximum entropy. If 0 is a parameter
with uncertainty distribution g, the entropy is defined as

-Jg(0)ln[g(8)1dO

The distribution g that maximizes this expression is
called the maximum entropy distribution. For finite
ranges, the p.d.f. with the largest entropy is the uniform,
or flat, distribution. Thus, entropy can be viewed as a
measure of the variability in the height of a p.d.f., and
a maximum entropy prior would be the one with the
required mean that is as flat as possible. Siu and Kelly
(1998, Table 2) give the maximum entropy distributions
for a number of possible constraints.

Maximum entropy methods may see more use in the
future, but still do not produce a systematic approach to
selecting only one prior from a set of possible priors.
In fact, the same problem that the Jeffreys' method
attempts to address (Section B.5.3.1) is present with the
maximum entropy approach: if a model is parame-
terized in two different ways, the maximum entropy
priors for the two parameters are inconsistent with each
other.

To address this lack of invariance, constrained
noninformative priors are obtained. They are based
on the maximum entropy approach in conjunction with
Jeffreys' method. That parameterization is used for
which the parameter is a location parameter. Giving
maximum entropy to this parameter produces a distribu-
tion called the constrained noninformative prior
distribution. Atwood (1996) presents constrained non-
informative priors and their application to PRA.
Constrained noninformative prior distributions are
seeing use in PRA, although not as much as Jeffreys'
priors.

Other ways of defining noninformative prior distribu-
tions exist. See Martz and Waller (1991) and Berger
(1985) for more information.

I
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I
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